
Date of Download: Aug 23, 2002
TP-ALL (Texts & Periodicals - All Law Reviews, Texts & Bar Journals)
18 SCCHITLJ 235
Copr. © West 2002 No Claim to Orig. U.S. Govt. Works

(Cite as: 18 Santa Clara Computer & High Tech. L.J. 235)
Santa Clara Computer and High Technology Law Journal
May, 2002

Articles

*235 SOURCE CODE VERSUS OBJECT CODE: PATENT IMPLICATIONS FOR THE OPEN SOURCE
COMMUNITY

Daniel Lin [FNd1]
Matthew Sag [FNdd1]
Ronald S. Laurie [FNddd1]

Copyright Copr. 2002 Santa Clara Computer & High Technology Law Journal;
Daniel

Lin; Matthew Sag; Ronald S. Laurie

I. Introduction

 Since the Federal Circuit's 1995 decision in In re Beauregard and the
United States Patent and Trademark Office's ("PTO") subsequent issuance of
its Guidelines for Computer Related Inventions ("PTO Guidelines") in 1996,
computer programs embodied in a computer-readable medium are now considered
patentable subject matter under 35 U.S.C. ¤ 101 by the PTO. [FN1]
Specifically, patent claims, now commonly referred to as "Beauregard claims,"
that recite an invention embodied in a computer-readable medium are readily
allowed by the PTO as long as they satisfy the novelty, non-obviousness, and
utility requirements of 35 U.S.C. ¤¤ 102 and 103. [FN2] However, the Federal
Circuit has never definitely concluded whether such embodied computer
programs are indeed *236 patentable. Therefore, the question is raised, what
does the PTO mean by a "computer program?" [FN3]
 To appreciate the ambiguity of the term "computer program," imagine a
scenario in which a programmer at a security software company is searching
the Web for an elegant solution to a cryptographic problem. He comes across
a cryptography open source project Web site that appears to offer such a
solution. The programmer downloads the source code from the Web site onto
his computer's hard drive. However, after inspecting the source code, he
concludes that the solution provided by the source code is not sufficiently
robust to be used at his company and decides not to use the code. Now,
further assume that unknown to either the programmer or the open source
project, the functionality described in the downloaded source code is covered
by a third party's patent (i.e., in Beauregard form). By simply downloading
the source code onto his hard drive (i.e., a computer-readable medium), has
the programmer infringed the third party's patent?
 In a world where source code on a hard drive is a computer program embodied
in a computer-readable medium the programmer has infringed the third party's
patent, because by merely downloading the source code, the programmer has

"made" the computer program under the Patent Act. [FN4] Thus, under such an
interpretation of "computer program," any person or company wishing to assess
the quality of source code by downloading a copy simply to examine it,
without even compiling or executing it, could potentially be infringing
another's patent. Such potential for patent liability could discourage the
widespread distribution of source code that produces the exchange of new
ideas, innovative theories and techniques, and secure coding practices that
are so valued by the open source ideal. As such, those in the open source
community typically view "software patents" as "the monster hiding under
every software *237 developer's bed." [FN5] Nevertheless, rather than
addressing the ambiguities of computer software patentability in the current
legal framework, much of the open source discussion regarding patents focuses
on the lack of novelty or obviousness in software patent claims. [FN6]
 It is far from clear whether we live in a world where source code on a hard
drive (or any other computer-readable medium) is considered statutory subject
matter as a "computer program" by the PTO or the Federal Circuit. This
Article explores the current legal framework regarding computer software and
patents. It explores the distinctions between source code and object code
and discusses the legal ramifications of these distinctions in patent law.
Part II provides a brief discussion of the technical distinctions between
source code and object code. Part III explores the issue of whether source
code infringes software patents, presents an argument that the infringement
of software by source code may overextend patent jurisprudence, and points
out the ambiguities of the PTO with regard to Beauregard claims when applied
to source code. Finally, Part IV examines the implications of the foregoing
for the open source community and concludes that if source code does not
infringe patents, then many important open source activities may be free from
software patent concerns.

*238 II. Source Code versus Object Code

 Source code has been described as a computer program written in a high
level human readable language. [FN7] In contrast, the related object code is
the same computer program written in computer readable format, which is
required for the program's execution by a computer. [FN8] One important
difference between source code and object code is that source code is
generally platform- independent, meaning that it does not refer to the
intricacies of any particular type of computer. [FN9] In contrast, object
code is platform- specific and must necessarily refer to the inner workings
of the particular computer (e.g., memory locations, instruction sets, etc.)
upon which the object code is to be executed. [FN10] In order to convert
source code into object code, the source code is provided to a compiler, a
separate computer program that reads the source code and translates it into
the object code. [FN11] As the compiler is executed, it performs lexical,
syntactic, *239 and semantic analyses of the source code, which is stored in
a source buffer in the computer's memory, outputting the compiled object code
into an object buffer. [FN12]
 During the compilation process, the compiler can significantly improve the
performance of the object code (a process known as "optimization"), by
adjusting and manipulating code generation in certain ways. For example, a
compiler can optimize the object code by improving the efficiency of loops,
procedure calls, address calculations, and peephole transformations. [FN13]
Such improvements are known as machine-independent optimizations since they
do not take into consideration any properties of the computer that will
execute the object code. [FN14] Furthermore, in order to generate object
code, a compiler must have precise knowledge of the instruction set of the
computer upon which the code is to be executed and therefore can create

further efficiencies through machine-dependent optimizations such as register
allocation and the utilization of special machine-instruction sequences.
[FN15] Depending upon the skill and objectives of the compiler writer, there
is great variety in the level of code optimization that different compilers
perform, resulting in significantly different object code given a particular
piece of source code. [FN16]

III. Can Source Code Infringe Patent Claims?

 As specifically enumerated by the Patent Act, only a process, machine,
manufacture, or composition of matter can be patented. [FN17] These four
express statutory categories (known as "statutory subject matter") exhaust
the possible subject matter that can be patentable *240 inventions. [FN18]
However, the Supreme Court has given a broad interpretation to these
categories, indicating that "Congress intended statutory subject matter to
'include anything under the sun that is made by man."' [FN19] In the
computer software arts, only three of the four express statutory categories
are implicated. These are process, machine, and manufacture claims. This
section concludes that only object code can be implicated in process and
machine claims. Furthermore, while object code that is embodied on a
computer-readable medium infringes a manufacture claim (i.e., Beauregard
claim), it is unclear whether source code that is similarly embodied also
constitutes statutory subject matter that infringes such claims.

A. Computer Software Claimed as a Machine
 The Federal Circuit's jurisprudence regarding machine claims in the
computer software arts culminated in its 1998 landmark decision in State
Street Bank & Trust Co. v. Signature Financial Group, Inc. [FN20] In State
Street, the Federal Circuit developed a new "practical utility" test to
determine whether a machine claim related to software was statutory subject
matter by simply assessing whether the software produced "a useful, concrete,
and tangible result." [FN21] The claim at issue in State Street was directed
to a "data processing system," which the court construed as a machine claim,
which is proper statutory subject matter under ¤ 101. [FN22] In particular,
the claim included means-plus-function elements, for which the related
structures disclosed in the specification were arithmetic logic circuits
configured to perform certain tasks. [FN23] As described in the patent
specification, such "configurations" to the arithmetic logic circuits were
effected by software. [FN24] In order to effect such arithmetic logic
circuits, such *241 software must necessarily be object code, not source
code, that is loaded into the memory of a personal computer.
 The decision in State Street followed a string of cases in the mid 1990s
that provided the Federal Circuit's rationale for favoring the patenting of
general purpose computers running software (necessarily in object code form,
not source code). [FN25] Most significantly, in In re Alappat, the court
held that a general-purpose computer programmed to perform particular
functions pursuant to instructions from software effectively created a new
machine that could be patentable under ¤ 101. [FN26] Therefore, under
current jurisprudence, software, as embodied within a general-purpose
computer, is patentable as a machine that realizes the functionality of the
software, as long as such software produces "a useful, concrete, and tangible
result." [FN27] Necessarily, such software must be object code rather than
source code.

B. Computer Software Claimed as a Process
 One year after State Street, in AT&T Corp. v. Excel Communications, Inc.,
the Federal Circuit extended its State Street decision to process claims.

[FN28] The AT&T court held that a process claim need not physically
transform the subject matter of the invention from one form to another.
[FN29] Rather, the inquiry is whether the mathematical algorithm used in the
method is applied in a practical manner to produce a useful result. [FN30]
As such, the Federal Circuit essentially recognized that software- related
processes were no *242 different from other inventions with regard to using
principles of novelty, non-obviousness and utility to determine
patentability. Consequently, software can be patented as a process claim
whose elements describe the functionality of the software, as long as such
software produces "a useful, concrete, and tangible result." [FN31] It is
important to note, however, that such software process claims can only be
infringed when the process is practiced--that is, when the software is
actually running on the computer--and for the software to be running on the
computer, that software must be in object code, not source code.

C. Computer Software Claimed as a Manufacture
 Since the Federal Circuit's 1995 decision in In re Beauregard and the
issuance of the PTO Guidelines in 1996, the PTO has been readily allowing
computer programs embodied in a computer-readable medium as proper
manufacture claims under 35 U.S.C. ¤ 101. [FN32] Nevertheless, the Federal
Circuit has never definitively decided the issue. In Beauregard, the PTO
Board of Patent Appeals and Interferences' ("Board") rejected Beauregard's
computer program product claim on the basis of the printed matter doctrine.
[FN33] However, during the appeal's pendency, apparently on the heels of the
Federal Circuit's decision in In re Lowry on August 26, 1994, the PTO,
reversing its previous position, stated that "computer programs embodied in a
tangible medium, such as floppy diskettes, are patentable subject matter
under 35 U.S.C. ¤ 101 and must be examined under 35 U.S.C. ¤¤ 102 and 103."
[FN34] Because the Commissioner ultimately agreed with Beauregard that the
printed matter doctrine was not applicable, no case or controversy existed
and the Federal Circuit vacated the Board of Patent Appeals and
Interferences' rejection. [FN35] Therefore, since Beauregard, the PTO has
accepted such "computer-readable medium" claims, commonly *243 referred to as
Beauregard claims, as statutory subject matter (i.e., articles of
manufacture).
 The following subsections present two possible reasons why the PTO reversed
its position with regard to the patentability of computer programs embodied
on a computer-readable medium in Beauregard. The first possibility is that
the PTO interpreted and extended the rationale in the Lowry decision
regarding the printed matter doctrine. The second possibility is that the
overwhelming support from the software industry influenced the PTO's
position. In both cases, we suggest that the PTO never considered source
code when declaring computer programs embodied in a computer-readable medium
to be patentable.

D. Following the Lowry Rationale
 The reversal of the PTO's position regarding Beauregard claims may likely
have been motivated by the Federal Circuit's decision in In re Lowry. [FN36]
As such, it is important to explore the metes and bounds of the decision in
order to understand whether, under Lowry, source code (as opposed to object
code) on a computer-readable medium infringes Beauregard claims.
 In Lowry, the Federal Circuit upheld patent claims for a memory containing
data stored in a data structure. [FN37] In doing so, the court rejected the
Board's assertion that such claims could be analogized and rejected under the
printed matter doctrine. Specifically, the Board reasoned that the
functional relationship between the printed matter (data stored in the data
structure) and the substrate (memory) was not new or non-obvious; in the

Board's view, Lowry's invention *244 merely disclosed the storage of
information into a computer's memory. [FN38] In response, the Federal
Circuit found that the printed matter doctrine was inapplicable and
emphasized that Lowry's claimed data structures defined "functional
characteristics of the memory." [FN39] The court observed that "the claims
require specific electronic structural elements which impart a physical
organization on the information stored in memory," that "Lowry's data
structures impose a physical organization on the data," and that "Lowry's
data structures are physical entities that provide increased efficiency in
computer operation." [FN40]
 Thus, if the PTO was indeed motivated by the Federal Circuit's *245
rationale in Lowry to accept computer-readable medium patent claims as
statutory, then whatever "information" is recorded on such a computer-
readable medium should satisfy the above Lowry requirements. Specifically,
the Federal Circuit's rejection of the printed matter doctrine in Lowry
relied on the fact that the "claims require specific electronic structural
elements which impart a physical organization on the information stored in
memory." [FN41] In other words, when object code is loaded into the
computer, it directs the computer's CPU *246 to physically change the exact
sequence of bits stored in the computer's memory, thereby manifesting or
"forming" the actual data structures in the memory. [FN42] Conversely, a
memory that is not manipulated by the CPU through the computer instructions
in object code would not infringe on the Lowry claim. Since source code
cannot be loaded into the computer to manipulate the CPU and manifest such
data structures in memory, source code, even when loaded into a computer,
could in no way infringe the Lowry claim. [FN43]
 The PTO must have believed that, under the Lowry court's rationale for
rejecting the printed matter doctrine, the Federal Circuit would have allowed
Lowry's claimed data structures even if the object code was embodied on a
computer-readable medium, rather than actually loaded into the computer's
memory, thereby creating the data structures in a different part of the
computer's memory. [FN44] Thus, although object code is merely an
instruction set that can create a data structure in a computer's memory, and
not the data structure itself, the PTO did not view this as an important
distinction. Whether the underlying substrate was a computer-readable medium
or a computer memory was unimportant, as long as what was embodied in the
underlying substrate (i.e., object code) would be able to "impart a physical
organization on the information stored in memory," once it was loaded into a
computer.
 Under the above rationale, object code embodied on a computer-readable
medium would infringe a Beauregard claim. Specifically, once object code
(i.e., a sequence of ones and zeros that are interpreted as instructions by
the computer's CPU) is loaded into a computer, it "impart[s] a physical
organization on the information stored in memory" and "define[s] functional
characteristics" of the computer's memory by directing the computer's CPU to
manipulate data and by referring to specific addresses in the computer's
memory. [FN45] Object code stored on a computer-readable medium can be
directly loaded into a particular computer in order to direct the computer's
CPU to create "specific electrical structural elements which impart a
physical organization on the information stored in memory." [FN46] Thus, in
order for a memory to embody the data structures described in Lowry, the code
that effects this functionality is necessarily object code, not source code.
 Unlike object code, source code cannot be directly loaded into a computer
in order to direct the computer's CPU to create "specific electrical
structural elements which impart a physical organization on the information
stored in memory." [FN47] Because source code is human-readable, not
computer- readable, it must first be compiled into computer-readable object

code before it can direct a computer's CPU to "define functional
characteristics of the memory." [FN48] While object code enables a computer
to manipulate specific addresses in the computer's memory (i.e., "impart[s] a
physical organization on the data" [FN49]), source code is simply a
description of that capability. As such, one could argue that source code
embodied on a computer-readable medium is more like "mere data" that would be
rejected as non-statutory under the printed matter doctrine since, in human-
readable form, source code is only "useful and intelligible to the human
mind," [FN50] and has no functional relationship to any structural element or
physical organization of a computer, as required by Lowry. Under this
argument, human-readable source code does not fulfill the requirements under
Lowry--source code only becomes functional when it is compiled into object
code.

E. Support from the Software Industry
 Alternatively or additionally, the PTO's change of position in Beauregard
may have been influenced by the overwhelming support for computer- readable
medium claims by the software industry. [FN51] One of the main reasons that
the software industry strongly endorsed the patentability of computer
programs embodied on a computer-readable medium was that software patents in
the form of process and machine claims were difficult to assert against
competitors. [FN52] Because process and machine claims could only be
directly infringed by end users who were typically customers of the software
*247 companies, such companies were reluctant to bring suit. [FN53] As such,
software companies would have to sue competitors for contributory
infringement or inducing infringement, both of which required proof of direct
infringement by customers as well as knowledge of the patent. [FN54] Thus,
allowing claims for computer programs embodied in computer-readable mediums
would enable software companies to sue competitors for direct infringement
and eliminate the burden of having to prove indirect infringement. [FN55]
 The above arguments made by the software industry only contemplated the
possibility of object code being stored on a computer-readable medium, and
not source code. That is, software companies were primarily concerned that
competitors would commercialize their patented inventions (i.e., sell
executable object code) with impunity. Since the software companies'
concerns focused upon a new direct cause of action against competitors, to
eliminate the need with process and machine claims to assert an indirect
infringement suit, then one could argue that the ability to assert such a new
direct cause of action should be construed narrowly, within the jurisprudence
and rationale that lies behind the patentability of software as machine and
process claims. As discussed earlier, both machine and process claims that
involve software must necessarily utilize object code, not source code. It
therefore follows that the related Beauregard claims should only be infringed
when object code, and not source code, is stored on a computer-readable
medium. Under this argument, there seems to be no compelling reason to
extend patent protection to source code embodied on a computer-readable
medium, since source code cannot be loaded into a computer to infringe a
machine patent nor can it be executed to infringe a process patent.
 One might argue that the transformation of source code to object code
through compilation is merely a mechanical process that should make no
substantive difference in its treatment. [FN56] Therefore, the argument
continues, if object code in a computer-readable medium infringes a
Beauregard claim, then so should the original source code. However, this
argument misses the point, that an allegedly infringing product must realize
the functionality (i.e., the elements) as claimed *248 in the patent. [FN57]
While object code can be directly loaded into a computer to realize this
functionality, source code cannot.

 As an analogy, consider a detailed blueprint for a new, non-obvious, and
useful car. Assume that such a blueprint can be simply scanned and submitted
to a master computer that directs the robots on the production floor to build
the car in accordance with the blueprint. Photocopying (or "making") or
selling the blueprint would not infringe any patent rights in the car since
the blueprint does not realize the functionality of the claims (nor is it
proper statutory subject matter). In contrast, making or selling a car built
from those blueprints would likely infringe a machine claim in the patent
under the rights granted under 35 U.S.C. ¤ 271. [FN58] As such, despite
being a mere mechanical process from blueprint to car, only the car is proper
patentable subject matter, as a machine. Similarly, source code is like a
detailed blueprint to the object code (i.e., the car). Since source code is
not computer-readable and therefore can not effect the functional or
structural requirements under the patent claims, the argument that compiling
source code to object code is merely mechanical, like the transformation of
the blueprint to the car, does not effectively support the theory of source
code patentability. [FN59]

F. The PTO's Guidelines for Computer-Related Inventions
 Nevertheless, the PTO Guidelines issued in 1996 provide examples of
computer- readable medium claims comprising "source code segments,"
indicating that the PTO does consider source code embodied in a computer-
readable medium to be statutory subject matter. [FN60] Specifically, the PTO
provides the following example as a proper article of manufacture claim:
 *249 A computer program embodied on computer-readable medium for
monitoring and controlling an automated manufacturing plant using a
telemetered processed data signal comprising:
 a. a compression source code segment comprising . . . [recites self-
documenting source code]; and
 b. an encryption source code segment comprising . . . [recites self-
documenting source code]. [FN61]
 Seemingly contradictorily, the PTO Manual of Patent Examining Procedure
("MPEP") notes that only "functional descriptive material" and not
"nonfunctional descriptive material" is patentable when claimed on computer-
readable medium because it "permits the function of the descriptive material
to be realized." [FN62] The MPEP describes "functional descriptive material"
as consisting of "data structures or computer programs which impart
functionality when employed as a computer component." [FN63] Arguably, only
object code, not source code, meets this description. Source code, without
more, when embodied on a computer-readable medium, neither "permits the
function it describes [in human-readable form] to be realized" nor can it be
"employed as a computer component [which imparts *250 functionality]." [FN64]
Only when source code is compiled into object code do such capabilities
emerge. For example, only object code can be "employed as a computer
component," namely by being loaded into the computer to direct the CPU to
manipulate memory. [FN65] Source code is much more similar to music,
literature, art, or photographs that are embodied on a computer-readable
medium. Such material is deemed to be nonstatutory "nonfunctional
descriptive material," and the computer-readable medium in which it is
embodied is "nothing more than a carrier." [FN66]
 Furthermore, the MPEP defines a computer program as "a set of instructions
capable of being executed by a computer." [FN67] Again, under this
definition, object code constitutes a computer program, but source code does
not, since it is not capable of being executed by a computer. The MPEP also
suggests that a computer program is only statutory when it is encoded on a
computer-readable medium because such a medium is "needed to realize the
computer program's functionality." [FN68] However, even when source code is

encoded on a computer-readable medium, the source code's functionality is
still not realized until it is compiled into object code and then loaded into
the computer.
 As such, the PTO's guidance seems to have added more confusion than
clarity. The PTO's reason that data structures and computer programs not
embodied on a computer-readable medium are not statutory is that "they are
not capable of causing functional change in the computer" [FN69] Thus, the
PTO believes that once a data *251 structure or computer program is embodied
on a computer-readable medium, it should be capable of causing functional
change in the computer. However, source code, even when embodied on a
computer-readable medium, is no different from source that is not embodied on
a computer-readable medium. That is, source code is not capable of causing
functional change in a computer--only object code is. [FN70] As such, source
code, whether or not on a computer-readable medium, is not computer-readable
itself and therefore seems no different than nonstatutory "computer listings
per se, i.e., the descriptions or expressions of the programs," even if it is
physically embodied on a computer-readable medium. [FN71] Indeed, if source
code on a computer readable medium is patentable subject matter even though
some intermediate processing is necessary before it can be executed (i.e.,
compiling), then, by extension, so also should be a handwritten source code
handwritten on a piece of paper since the only difference is the number of
intermediate machine processing steps (i.e., scanning the code on paper,
utilizing handwriting recognition software, and then compiling).
Consequently, to say that source code on computer-readable medium infringes
Beauregard claims arguably exalts form over substance and could be contrary
to the intentions of the Federal Circuit.

IV. Implications for the Open Source Community

 In 1984, Richard Stallman quit his job as a researcher at the MIT
Artificial Intelligence Lab to form the GNU project. [FN72] Frustrated by
what he called the "proprietary software social system," that is, the lack of
free sharing and community in the computer industry, Stallman launched the
GNU project in hopes of reviving the software sharing community that had
inspired him during the early 1970s as an AI Lab staff system developer at
MIT. [FN73] The aim of the GNU project was to develop an operating system
for which the source code would *252 be free. [FN74] In order to ensure that
GNU software would be free, Stallman introduced a concept he called
"copyleft" in which everyone was given permission to copy, modify, and
distribute modified versions of the GNU software, but not to add restrictions
of their own. [FN75] The concept of copyleft was implemented in the form of
the GNU General Public License ("GPL") that accompanied GNU software. [FN76]
A year later, the Free Software Foundation was created as a tax-free charity
to promote computer users' right to use, study, copy, modify, and
redistribute computer programs, including the GNU operating system, as free
software. [FN77]
 However, because the GNU project and the Free Software Foundation were
decidedly anti-business, a group of leaders in the free software community,
including Eric Raymond, Tim O'Reilly, and Bruce Perens, developed the idea
for Open Source and the Open Source Definition in 1997 to encourage
businesses to adopt the concept of free software. [FN78] Under the Open
Source Definition, programmers were assured of (1) the right to make copies
of an open source program and distribute those copies, (2) the right to have
access to the software's source code, and (3) the right to make improvements
to the program. [FN79] While the GPL satisfied the requirements of the Open
Source Definition, it was more restrictive. For example, the Open Source
Definition allowed a user of open source software to produce a derivative

work and distribute such work as proprietary. [FN80] In contrast, the user
of GNU software, under the GPL, was required to distribute derivative works
under the terms of the GPL (i.e., not proprietary). [FN81]
 Because third parties outside the stream of open source development can
hold software patents related to the techniques and *253 functionalities
utilized in an open source project, software patents have always been viewed
as a threat to free software by the open source community. [FN82] The
essential fear of the open source community is that free software development
and distribution can be controlled or prevented by third party patent
holders. However, if source code, as discussed earlier, is not patentable,
such fears, with regard to source code development and distribution, can be
allayed. That is, no third party patent can prevent open source developers
from copying, modifying, or distributing source code.

A. Non-Infringing and Infringing Open Source Activities
 Those in the open source community typically describe the consequences of
impeding on software patent rights broadly, without exploring in detail how
certain open source activities might, if at all, infringe on such rights.
For example, Russell Pavlicek writes that "[i]f the author unknowingly
violated a software patent, the program cannot be distributed without
permission from the patent holder." [FN83] Similarly, Richard Stallman
laments that "[s]oftware patents monopolize an algorithm, or a feature, or a
technique so that nobody [but the patent holder] can use them in developing a
program. And this makes software development dangerous." [FN84]
 Despite such concerns about infringement, it is clear that if source code
embodied in a computer-readable medium cannot infringe a Beauregard claim,
then the distribution and development of source code, as well as the
studying, copying, and modification of source code, without more, cannot
infringe any patent. As discussed earlier, the pertinent statutory subject
matter that can be patentable in the computer software arts are processes,
machines, and articles of manufacture. [FN85] In order to infringe a
patented process, one must necessarily practice the steps in the process.
However, a patented process regarding software can only be practiced when the
object code, not source code, is executed on a computer, thereby realizing
*254 the functionality of the process. Similarly, a patented machine
regarding software can only be infringed when the object code, not source
code, is loaded into the memory of a computer. [FN86] Finally, under
Beauregard, a computer program embodied on a computer-readable medium can be
patentable as a product or article of manufacture. However, if, as argued
earlier, a "computer program" must be in object code format in order to
satisfy the elements of a Beauregard claim, then activities regarding source
code are also free from the possible infringement of patented products (i.e.,
Beauregard claims).
 While activities regarding source code may be free from patent concerns,
the same cannot be said for activities regarding object code. That is, under
the Patent Act, direct infringement consists of making, using, offering to
sell, or selling the invention defined by the claims of a patent, without the
authority of the patent owner. [FN87] Under a software process patent,
running the object code on a computer could constitute "using" the invention
under the Patent Act. Similarly, under a software machine patent, loading
the object code into a computer's memory could constitute "making" the
invention under the Patent Act. Indeed, even simply copying the object code
onto a CD-ROM, floppy diskette, or hard disk drive or just compiling the
source code into object code and saving the object code onto a CD-ROM, floppy
diskette, or hard disk drive could constitute "making" the invention under a
Beauregard claim. Similarly, distributing the object code to third parties
could constitute "selling" the invention under a Beauregard claim.

 In summary, if source code does not infringe Beauregard claims, those open
source activities that involve only source code may be free from patent
infringement concerns. Under this premise, the practice of open source
security--that is, the widespread distribution of the source code of security
software in an effort to study and quickly identify vulnerabilities in the
code--does not implicate software patent rights, since the distribution of
source code does not impede *255 any patent rights. [FN88] Similarly, the
pure development or modification of source code, whose functionality may be
claimed in a software patent, does not infringe on such patents. [FN89]
Likewise, general activities regarding source code, such as copying,
modifying, and distributing, which lie at the heart of the open source
movement, do not infringe on software patents. Nevertheless, the moment that
source code is compiled into object code, or object code, rather than source
code, is run, copied, distributed, or modified, then software patent rights
may be implicated.

B. Liability Under Contributory Infringement or Inducing Infringement
 Even if source code embodied on a computer-readable medium does not
infringe Beauregard claims, those who copy, modify, or distribute source code
must be aware of potential liabilities under theories of contributory
infringement or induced infringement. The Patent Act defines contributory
infringement as selling:
 [A] component of a patented machine, manufacture, combination or
composition, or a material or apparatus for use in practicing a patent
process, constituting a material part of the invention, knowing the same to
be especially made or especially adapted for use in an infringement of such
patent, and not a staple article or commodity of commerce suitable for
substantial noninfringing use. [FN90]
 Thus, distributing or selling source code could constitute contributory
infringement, since source code could be considered "a component of a
patented manufacture" in which the patented manufacture (i.e., Beauregard
claim) is the compiled object code (embodied on a computer-readable medium).
[FN91] However, contributory infringement requires that the alleged
infringer have knowledge of the patent, as well as knowledge that that
compilation *256 of the source code into object code would infringe the
patent. [FN92] Thus, if the alleged infringer has no knowledge that the
object code resulting from compilation of source code may infringe a patent,
she will not be liable for contributory infringement. [FN93] Furthermore,
the alleged infringer may also argue that the study and analysis of the
source code, without its compilation, is a "substantial noninfringing use"
which prevents its distribution from implicating contributory infringement.
[FN94]
 Similarly, the Patent Act states that "whoever actively induces
infringement of a patent shall be liable as an infringer." [FN95] Thus,
distributing or selling source code may be considered "actively inducing
infringement" if such distribution or sale leads to the direct infringement
of a software machine, process, or manufacture claim (i.e., by utilizing the
resulting object code). However, liability for inducing infringement requires
that the alleged inducer have the specific intent to encourage direct
infringement and not merely that she had knowledge that the acts may
constitute infringement. [FN96] As such, without knowledge of the patent, a
distributor or seller of source code cannot be liable for inducing
infringement.

V. Conclusion
 From a computer programmer's perspective, making a distinction between
source code and object code may, initially, seem ridiculous. However, from a

legal perspective, equating the two, at least for patent purposes, may lead
to unintended consequences many computer programmers would find
objectionable. In our current legal framework, it is clear that executing
object code, or even copying object code onto a hard drive, may potentially
infringe a software patent. However, as discussed, it is unclear whether the
copying of source code also potentially infringes a patent. In a world where
source code is statutory subject matter and does infringe such patents, any
programmer who downloads source code from a Web site simply *257 to read it
and study its quality may be liable for patent infringement. In such a
world, it does not matter that the programmer ultimately chooses not to use
the source code (i.e., compiling it and executing the object code), because
the mere act of downloading the source code (i.e., "making" under the Patent
Act) itself infringes the patent. Framed in this context, distinguishing
source code from object code seems much less ridiculous.
 This Article has presented an argument that certain activities relating
only to source code, such as copying, modifying, and distributing, may not
infringe any third party software patent rights. [FN97] Specifically,
process and machine patents cannot be infringed until object code is either
executed or loaded into the memory of a computer, and therefore they are not
implicated by activities relating only to source code. Additionally, under
Beauregard claims, "computer programs" that are embodied in a computer-
readable medium could be narrowly construed to mean only object code, since
object code, and not source code, is the only format "capable of being
executed by a computer." [FN98] The implication of this interpretation for
the open source community is that activities that involve only source code,
and not object code, such as open source security efforts, may be freely
practiced without the concern of infringing software patents. Nevertheless,
any time object code is implicated in an open source activity, software
patents still remain "the monster hiding under every software developer's
bed." [FN99]

[FNd1]. Daniel Lin is an associate at Skadden, Arps, Slate, Meagher & Flom
LLP in Palo Alto, CA. He can be reached at dlin@skadden.com.

[FNdd1]. Matthew Sag is an associate at Skadden, Arps, Slate, Meagher & Flom
LLP in Palo Alto, CA. He can be reached at msag@skadden.com.

[FNddd1]. Ron Laurie is a partner and the head of the IP Strategies and
Transactions Practice at Skadden, Arps, Slate, Meagher & Flom LLP in Palo
Alto, CA. He can be reached at rlaurie@skadden.com. The authors would like
to thank David Hansen, Fred Kim, Gene Su, Joseph Yang, and participants at
Information Insecurity: Protecting Data in the Digital Age at Santa Clara
University for their helpful discussions and comments.

[FN1]. In re Beauregard, 53 F.3d 1583 (Fed. Cir. 1995) ("The Commissioner now
states 'that computer programs embodied in a tangible medium, such as floppy
diskettes, are patentable subject matter under 35 U.S.C. ¤ 101...."');
Examination Guidelines for Computer Related Inventions, 61 Fed. Reg. 7478,
7481 (Patent & Trademark Office, U.S. Dep't of Commerce) (Feb. 28, 1996)
[hereinafter Examination Guidelines] ("When functional descriptive material
is recorded on some computer-readable medium it becomes structurally and
functionally interrelated to the medium and will be statutory in most
cases."). See also 35 U.S.C. ¤ 101 (2000).

[FN2]. 35 U.S.C. ¤¤ 102-103.

[FN3]. The PTO Manual of Patent Examining Procedure ¤ 2106 defines a computer
program as "a set of instructions capable of being executed by a computer."
Patent & Trademark Office, U.S. Dep't of Commerce, Manual of Patent Examining
Procedure ¤ 2106, at 2100-13 (8th ed. Aug. 2001) (emphasis added)
[hereinafter MPEP], available at http://
www.uspto.gov/web/offices/pac/mpep/mpep.htm.

[FN4]. 35 U.S.C. ¤ 271 (2000) ("Except as otherwise provided in this title,
whoever, without authority makes, uses, offers to sell or sells any patented
invention, within the United States or imports into the United States any
patented invention during the term of the patent therefor, infringes the
patent) (emphasis added). Id. Downloading source code creates a local copy
of that source code, thereby effectively "making" the source code.

[FN5]. Donald K. Rosenberg, Open Source: The Unauthorized White Papers 240
(2000). See also Russell C. Pavlicek, Embracing Insanity: Open Source
Software Development 161 (2000) ("The use of software patents has been a real
problem in the Open Source world.); Richard Stallman, The GNU Operating
System and the Free Software Movement, in Open Sources: Voices from the Open
Source Revolution 53-70 (Chris DiBona et al. eds., 1999) ("The worst threat
we face comes from software patents, which can put algorithms and features
off limits to free software for up to twenty years."), available at http://
www.gnu.org/gnu/thegnuproject.html (last visited Apr. 11, 2002).

[FN6]. See, e. g., Richard Stallman, The Anatomy of a Trivial Patent, Linux
Today, May 26, 2000 ("Programmers are well aware that many of the software
patents cover laughably obvious ideas."), at http://linuxtoday.com/news_
story.php3?ltsn=2000-05-26-004-04OP-LF; League for Programming Freedom,
Against Software Patents, Feb. 28, 1991, at
http://lpf.ai.mit.edu/Patents/against- software-patents.html (last modified
Apr. 29, 1994); Lawrence Lessig, The Problem with Patents, The Industry
Standard, Apr. 23, 1999 ("What is 'novel,' 'nonobvious' or 'useful' is hard
enough to know in a relatively stable field. In a transforming market [such
as the Internet], it's nearly impossible for anyone... to identify what's
'novel."' (alteration added)), at http://
www.thestandard.com/article/display/0,1151,4296,00.html. Additionally, two
Web sites provide more information on the case against software patents:
League for Programming Freedom, at http://lpf.ai.mit.edu/Patents/patents.html
and Free Patents: Protecting Innovation and Competition in the IT Industry,
at http:// www.freepatents.org/.

[FN7]. Reiffen v. Microsoft Corp., 214 F.3d 1342, 1344 (Fed. Cir. 2000) ("A
source program is a computer program written in a high level human readable
language which the application refers to as source code; the end product of
the compilation of the source program is a binary machine language
composition which the application refers to as object code, and which is
required for the program's execution by a computer.").

[FN8]. Id.

[FN9]. Webopedia defines a "high-level language" as "[a] programming language
such as C, FORTRAN, or Pascal that enables a programmer to write programs
that are more or less independent of a particular type of computer."
Webopedia, High-Level Language (emphasis added), at http://
www.webopedia.com/TERM/h/high_level_language.html (last modified Oct.
26,1996).

[FN10]. Webopedia defines "machine languages" as "the only languages
understood by computers." Webopedia, Machine Language (emphasis added), at
http://www.webopedia.com/TERM/m/machine_language.html (last modified Nov. 16,
2001). For the purposes of this Article, object code is synonymous with
"machine language" or "executable code."

[FN11]. Object code may be defined in various ways. For the purposes of this
Article, the term "object code" will be synonymous with "machine language" or
"executable code," see supra note 10. Webopedia defines object code as:
 The code produced by a compiler. Programmers write programs in a form
called source code. The source code consists of instructions in a particular
language, like C or FORTRAN. Computers, however, can only execute
instructions written in a low-level language called machine language.
 To get from source code to machine language, the programs must be
transformed by a compiler. The compiler produces an intermediary form called
object code. Object code is often the same as or similar to a computer's
machine language. The final step in producing an executable program is to
transform the object code into machine language, if it is not already in this
form. This can be done by a number of different types of programs, called
assemblers, binders, linkers, and loaders.
Webopedia, Object Code (emphasis added), at http://
www.webopedia.com/TERM/o/object_code.html (last modified Sept. 1, 1996).
Furthermore, "object code" in this Article means "absolute machine language"
that can be placed in a fixed location in a computer's memory and immediately
executed. In contrast, a "relocatable machine language program," also known
as an object module, allows subprograms to be compiled separately and linked
together and laded for execution by a link loader. See Alfred V. Aho et al.,
Compilers: Principles, Techniques, and Tools 514 (1985).

[FN12]. See Aho, supra note 11, at 587.

[FN13]. See id.

[FN14]. See id. at 585.

[FN15]. See id. at 587.

[FN16]. See id.

[FN17]. 35 U.S.C. ¤ 101 (2000) ("Whoever invents or discovers any new and
useful process, machine, manufacture, or composition of matter, or any new
and useful improvement thereof, may obtain a patent therefore, subject to the
conditions and requirements of this title.").

[FN18]. See Kewanee Oil Co. v. Bicron Corp., 416 U.S. 470, 483 (1974) ("[N]o
patent is available for a discovery, however useful, novel, and nonobvious,
unless it falls within one of the express categories of patentable subject
matter of 35 U.S.C. ¤ 101.").

[FN19]. Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980); see also Diamond
v. Diehr, 450 U.S. 175, 182 (1981); Bonito Boats, Inc. v. Thunder Craft
Boats, Inc., 489 U.S. 141, 154 (1989); In re Alappat, 33 F.3d 1526, 1542
(Fed. Cir. 1994) ("Thus, it is improper to read into ¤ 101 limitations as to
the subject matter that may be patented where the legislative history does
not indicate that Congress clearly intended such limitations.").

[FN20]. State Street Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d
1368 (Fed. Cir. 1998).

[FN21]. Id. at 1373.

[FN22]. Id. at 1372.

[FN23]. Id. at 1371-72.

[FN24]. U.S. Patent No. 5,193,056 (issued Mar. 9, 1993) ("The portfolio/fund
accountant makes use of a personal computer 44 programmed with software
50.").

[FN25]. See In re Beauregard, 53 F.3d 1583, 1584 (Fed. Cir. 1995)
("'[C]omputer programs embodied in a tangible medium, such as floppy
diskettes, are patentable subject matter under 35 U.S.C. ¤ 101 and must be
examined under 35 U.S.C. ¤¤ 102 and 103."'); In re Alappat, 33 F.3d 1526,
1545 (Fed. Cir. 1994) ("[A] computer operating pursuant to software may
represent patentable subject matter, provided, of course, that the claimed
subject matter meets all of the other requirements of Title 35."); In re
Lowry, 32 F.3d 1579, 1583-84 (Fed. Cir. 1994) (Particular data structures are
statutory subject matter because, "more than mere abstraction,... data
structures are specific electrical or magnetic structural elements in a
memory... that provide increased efficiency in computer operation."); In re
Warmerdam, 33 F.3d 1354, 1361 n.6 (Fed. Cir. 1994) ("[T]he storage of data in
a memory physically alters the memory, and thus in some sense gives rise to a
new memory."); Arrythmia Research Tech., Inc. v. Corazonix Corp., 958 F.2d
1053, 1060 (Fed. Cir. 1992) (Computer-performed operations that simply
"transform a particular input signal to a different output signal, in
accordance with the internal structure of the computer as configured by
electronic instructions," are statutory subject matter.). See also
Examination Guidelines, supra note 1, at 7479.

[FN26]. In re Alappat, 33 F.3d at 1545.

[FN27]. State Street Bank & Trust Co. v. Signature Fin. Group, Inc., 149 F.3d
1368, 1373 (Fed. Cir. 1998).

[FN28]. AT&T Corp. v. Excel Communications, Inc., 172 F.3d 1352, 1358 (Fed.
Cir. 1999).

[FN29]. Id.

[FN30]. Id. at 1360.

[FN31]. State Street Bank, 149 F.3d at 1373.

[FN32]. In re Beauregard, 53 F.3d 1583,1584 (Fed. Cir. 1995) ("The
Commissioner now states 'that computer readable programs embodied in a
tangible medium, such as floppy diskettes, are patentable subject matter
under 35 U.S.C. ¤ 101...."); Examination Guidelines supra note 1, at 7481
("When functional descriptive material is recorded on some computer-readable
medium it becomes structurally and functionally interrelated to the medium
and will be statutory in most cases."); 35 U.S.C. ¤ 101 (2000).

[FN33]. In re Beauregard, 53 F.3d at 1584. Under the printed matter
doctrine, "a mere arrangement of printed matter though seemingly a

'manufacture' is rejected as not being within the statutory classes." MPEP,
supra note 3, ¤ 706.03(a).

[FN34]. In re Beauregard, 53 F.3d at 1584.

[FN35]. Id.

[FN36]. See Jeffrey S. Draeger, Comment, Are Beauregard Claims Really Valid?,
17 J. Marshall J. Computer & Info. L. 347, 361 (1998) ("The In re Lowry
decision came after the PTO Board's decision on Beauregard's claims but
before the claims reached the Federal Circuit. Thus, the decision in In re
Lowry foreshadowed the reversal of the PTO Board's application of the printed
matter rejection in the In re Beauregard case, since the Federal Circuit
reversed a printed matter rejection in Lowry.''); Jeffrey R. Kuester et al.,
A New Frontier in Patents: Patent Claims to Propagated Signals, 17 J.
Marshall J. Computer & Info. L. 75, 79 (1998) ("It should be noted that the
Appellants filed their brief in In re Beauregard on April 4, 1994 and the
Federal Circuit issued its opinion in In re Lowry on August 26, 1994. It
appears that the PTO may have decided to allow the application involved in In
re Beauregard to issue as a patent after receiving the Federal Circuit's
decision in In re Lowry, since both cases involved the application of the
printed matter rejection to claims directed to computer programs stored in a
memory device."); Gregory A. Stobbs, Software Patents ¤ 9.59 (Supp. 1999)
("Nevertheless, as Lowry had extensively addressed the printed matter
rejection, the Patent Office moved to remand Beauregard for reconsideration,
claiming that the rejection of Beauregard's application may have been
improper in light of Lowry.").

[FN37]. In re Lowry, 32 F.3d 1579, 1581 (Fed. Cir. 1994).

[FN38]. Id. at 1582.

[FN39]. Id. at 1583 ("Thus, Lowry's claims define functional characteristics
of the memory.").

[FN40]. Id.

[FN41]. Id.

[FN42]. See generally Andrew S. Tanenbaum, Structured Computer Organization
398 (3d ed. Prentice Hall 1990) ("[T]hree programs--the user's object
program, the operating system, and the microprogram--can be found in the
computer's memory at run time. All traces of the original source program
have vanished." (emphasis added)). For a simple example of the
implementation of a data structure in memory, which demonstrates the
implementation of a stack data structure in memory, see id. at 178-86.

[FN43]. While loading the source code into the memory of a computer does
impart a physical organization on the memory, such physical organization
would not realize the functionality as described in the claims.

[FN44]. It is important to understand that the computer memory in which
object code (i.e., instructions) is loaded in order to direct the computer's
CPU to manipulate data via data structures is a different part of the
computer's memory than the memory that the computer's CPU uses to actually
create the data structures and manipulate data per those object code
instructions.

[FN45]. In re Lowry, 32 F.3d 1579, 1583-84 (Fed. Cir. 1994).

[FN46]. Id.

[FN47]. Id.

[FN48]. Id.

[FN49]. Id.

[FN50]. Id. at 1583 ("The printed matter cases 'dealt with claims defining as
the invention certain novel arrangements of printed lines or characters,
useful and intelligible to only the human mind."' (quoting In re Bernhart,
417 F.2d 1395, 1399 (C.C.P.A. 1969))).

[FN51]. A total of 10 amicus briefs were filed in Beauregard, nine urging
reversal of the Board's rejection and one taking no formal position. Shawn
McDonald, Patenting Floppy Disks, or How the Federal Circuit's Acquiescence
has Filled the Void Left by Legislative Inaction, 3 Va. J.L. & Tech. 9, P 89
(Fall 1998), at
http://vjolt.student.virginia.edu/graphics/vol3/home_art9.html; see Robert C.
Laurenson, Computer Software 'Article of Manufacture' Patents, 12 Computer
Law. 18, 19 (June 1995).

[FN52]. See Laurenson, supra note 51, at 19
 (The alternative means of obtaining protection of computer software under
the patent system, i.e., by casting the software in the form of the "process"
it performs, or in the form of the "machine" on which it executes, are also
not entirely adequate. Claims directed to the process performed by the
software (or the machine on which the software executes) are largely directed
to the activities of end users. Such claims may thus not be entirely
effective for the purpose of enforcing the underlying patent against
competitors.).

[FN53]. See McDonald, supra note 51, P 98.

[FN54]. See Laurenson, supra note 51, at 21 n.22; McDonald, supra note 51, P
98. See also 35 U.S.C. ¤ 271(b)-(c) (2000).

[FN55]. See McDonald, supra note 51, P 99.

[FN56]. Note, however, the complexity of compilers as described supra in
Section II.

[FN57]. The MPEP recommends that "[A]pplicants should be encouraged to
functionally define the steps the computer will perform rather than simply
reciting source or object code instructions." MPEP, supra note 3, ¤ 2106, at
2100-20 (emphasis added).

[FN58]. 35 U.S.C. ¤ 271(a) ("Except as otherwise provided in this title,
whoever without authority makes, uses, offers to sell or sells any patent
invention, within the United States, or imports into the United States any
patented invention during the term of the patent therefore, infringes the
patent.").

[FN59]. One might further argue that the source code/object code distinction
is meaningless because the source code already describes the new, non-
obvious, and useful invention that a patent owner is trying to protect, and
to allow such source code to be copied or distributed with impunity would
weaken the strength of patent protection. However, this argument fails to
take into account that the very paper upon which a patent specification and
claims are written also describes the new, non-obvious, and useful invention
that a patent owner is trying to protect.

[FN60]. See Patent & Trademark Office, U.S. Dep't of Commerce, Examination
Guidelines for Computer Related Inventions: Claim Examples--
Compression/Encryption Examples (Mar. 28, 1996), available at http://
www.uspto.gov/web/offices/pac/dapp/oppd/pdf/compenex.pdf [hereinafter Claim
Examples]; see also Examination Guidelines supra note 1, at 7485; MPEP, supra
note 3, ¤ 2106. MPEP ¤ 2106 includes the Guidelines as well as additional
comments regarding computer-related inventions not included in the
Guidelines. Id.

[FN61]. Claim Examples, supra note 60, claim 12, at 34. Notice that such a
claim would not be infringed by a CD-ROM containing object code.
Furthermore, MPEP ¤ 2106 states that:
 When a claim or part of a claim is defined in computer program code,
whether in source or object code format, a person of skill in the art must be
able to ascertain the metes and bounds of the invention. In certain
circumstances, as where self-documenting programming code is employed, use of
programming language in a claim would be permissible because such program
source code presents "sufficiently high-level language and descriptive
identifiers" to make it universally understood to others in the art without
the programmer having to insert comments... Applicants should be encouraged
to functionally define the steps the computer will perform rather than simply
reciting source or object code instructions.
MPEP, supra note 3, ¤ 2106, at 2100-19 to -20 (emphasis added). The
foregoing advises a patent examiner how to assess whether a claim that is
defined in computer program code "particularly pointing out and distinctly
claiming the invention" as required under 35 U.S.C. ¤ 112. See 35 U.S.C. ¤
112 (2000). This assessment differs from the assessment of whether the
actual source code itself, if embodied on a computer-readable medium, is
statutory subject matter, under 35 U.S.C. ¤ 101. While using source code to
describe the functionality of a claim (e.g., whether a process, machine, or
product claim) may prove adequate for ¤ 112 purposes, the foregoing statement
says nothing about whether source code itself can infringe a Beauregard
claim.

[FN62]. MPEP, supra note 3, ¤ 2106, at 2100-12.

[FN63]. Id. at 2100-11 (emphasis added).

[FN64]. Id. at 2100-11 to -12.

[FN65]. Id.

[FN66]. Id. at 2100-14.

[FN67]. Id. at 2100-13 (emphasis added).

[FN68]. MPEP, supra note 3, ¤ 2106, at 2100-13 ("Office personnel should
treat a claim for a computer program, without the computer-readable medium

needed to realize the computer-programs functionality, as nonstatutory
functional descriptive material.").

[FN69]. Id. In contrast, the MPEP states that "a claimed computer- readable
medium encoded with a data structure" does define structural and functional
interrelationship between the computer hardware and software components that
do permit the data structure's functionality to be realized. Id at 2100-13.
Such a statement, however, may reflect a misunderstanding by the PTO of the
relationship between data structures and computer-readable mediums. That is,
data structures, themselves, cannot be encoded in a computer-readable medium.
However, the object code that provides instructions to a computer to create
such data structures in the memory of the computer can be encoded on a
computer-readable medium. Specifically, the object code is loaded from the
computer-readable medium into the computer's memory, which then directs the
computer's CPU to create a data structure in another part of the computer's
memory. The data structure, itself, can only be manifested within the memory
of the computer. The foregoing explanation reflects the essence of the Lowry
decision. See In re Lowry, 32 F.3d 1579, 1583-84 (Fed. Cir. 1994). In order
to be infringed, the Lowry memory claim essentially required object code to
already be loaded into the computer in order to direct the CPU to create the
data structure in the memory.

[FN70]. Indeed, a general-purpose computer (such as a PC or a Macintosh)
typically does not have compilers installed as part of its operating system.
As such, providing a user with a CD-ROM having only source code and no object
code would be useless, unless the user had also installed a compiler on her
system. Thus, one might argue that the definition of a "computer" would not
include a compiler.

[FN71]. MPEP, supra note 3, ¤ 2106, at 2100-13.

[FN72]. See Stallman, supra note 5, at 57.

[FN73]. Id.

[FN74]. Under Stallman's definition, a program is free if: (1) you have the
freedom to run the program for any purpose, (2) you have the freedom to
modify the program to suit your needs, (3) you have the freedom to
redistribute copies; and (4) you have the freedom to distribute modified
versions of the program. Id. at 56.

[FN75]. See id. at 59.

[FN76]. See Free Software Foundation, Inc., The GNU General Public License
(GPL) (Version 2, June 1991), at http://www.opensource.org/licenses/gpl-
license.html.

[FN77]. For more information, see Free Software Foundation, at http://
www.fsf.org/fsf/fsf.html (last modified Apr. 8, 2002).

[FN78]. See Chris DiBona et al., Introduction to Open Sources: Voices from
the Open Source Revolution, supra note 5, at 3.

[FN79]. See Bruce Perens, The Open Source Definition, in Open Sources: Voices
from the Open Source Revolution, supra note 5, at 172.

[FN80]. See id. at 177.

[FN81]. See id.

[FN82]. See, e.g., Stallman, supra note 5, at 67 ("The worst threat we face
comes from software patents, which can put algorithms and features off-limits
to free software for up to twenty years.").

[FN83]. Pavlicek, supra note 5, at 161 (emphasis added).

[FN84]. J.S. Kelly, An interview with Richard Stallman, LinuxWorld.com, 2000
(emphasis added), at http://www.linuxworld.com/linuxworld/lw-2000-03/lw- 03-
rms.html?4-4 (last visited Apr. 11, 2002).

[FN85]. 35 U.S.C. ¤ 101 (2000) ("Whoever invents or discovers any new and
useful process, machine, manufacture, or composition of matter, or any new
and useful improvement thereof, may obtain a patent therefore, subject to the
conditions and requirements of this title.").

[FN86]. See In re Alappat, 33 F.3d 1526, 1545 (Fed. Cir. 1994) ("[A] computer
operating pursuant to software may represent patentable subject matter,
provided, of course, that the claimed subject matter meets all of the other
requirements of Title 35.").

[FN87]. See 35 U.S.C. ¤ 271(a) ("Except as otherwise provided in this title,
whoever without authority makes, uses, offers to sell or sells any patented
invention, within the United States or imports into the United States any
patented invention during the term of the patent therefor, infringes the
patent.").

[FN88]. See, e.g., Alex Salkever, Is Open-Source Security Software Safe?,
BusinessWeek Online, Dec. 11, 2001, at http://
www.businessweek.com/bwdaily/dnflash/dec2001/nf20011211_3015.htm (last
visited Apr. 11, 2002).

[FN89]. Nevertheless, such development or modification almost always
necessarily involves compiling the source code into object code for testing
purposes. Such compilation could potentially infringe a Beauregard claim in
a software patent. However, one might argue that the damages for such
infringement would be minimal, if at all.

[FN90]. 35 U.S.C. ¤ 271(c).

[FN91]. Similarly, source code could also be considered a component of
patented machine or process, once it is compiled into object code and either
loaded into a computer or executed.

[FN92]. For a general description of contributory infringement, see Robert L.
Harmon, Patents and the Federal Circuit ¤ 6.4, 306-12 (The Bureau of National
Affairs, Inc., 4th ed. 2001).

[FN93]. See Hewlett-Packard Co. v. Bausch & Lomb, Inc., 909 F.2d 1464, 1469
n.4 (Fed. Cir. 1990) ("Although not clear on the face of the statute,
subsequent case law held that ¤ 271(c) required not only knowledge that the
component was especially made or adapted for a particular use but also
knowledge of the patent which proscribed that use.").

[FN94]. 35 U.S.C. ¤ 271(c) (2000).

[FN95]. Id. ¤ 271(b).

[FN96]. See Manville Sales Corp. v. Paramount Sys., 917 F.2d 544, 553 (Fed.
Cir. 1990).

[FN97]. This Article has not addressed the issues regarding interpreters,
which immediately execute high-level languages without compilation. See
Webopedia, Interpreter, at http://www.webopedia.com/TERM/i/interpreter.html
(last modified Dec. 10, 2001). However, without extensive analysis of these
issues, if a high-level language that is intended to be executed through an
interpreter rather than compiled into object code is embodied in a computer-
readable medium, then under the reasons presented in this Article, such an
embodiment would likely infringe a Beauregard claim.

[FN98]. See MPEP, supra note 3, ¤ 2106, at 2100-13.

[FN99]. See Rosenberg, supra note 5, at 240.
END OF DOCUMENT

