12 TRANSPARENCIES FOR UNIT

COOPERATI RESEARCF

[__]

COOPERATIVE RESEARCH PROMOTES TRANSFER BY...

PROVIDING MARKET FOCUS

- FACILITATING DESIGN PROCESS
- PROVIDING METHOD TO TRANSFER KNOW-HOW

ŢĠĿĬ

TYPES OF COOPERATIVE R&D

12-3

CONSORTIA SINGLE FIRM

TECHNICAL ASSISTANCE

OVERVIEW

COOPERATIVE RESEARCH = POTENTIAL BENEFITS

- PRIVATE SECTOR
- UNIVERSITY
- PUBLIC

MOTIVATIONS FOR COOPERATIVE RESEARCH

- R & D OBJECTIVES
- COMMON PROBLEMS
 - SCALE
 - RISK
 - TECHNICAL STAFF DEVELOPMENT
 - HIGH-WIDE TECHNOLOGY BASE

R & D OBJECTIVES, TECHNOLOGY BASE, INDUSTRY STRUCTURE DETERMINE FORM OF COOPERATION

POTENTIAL BENEFITS

POTENTIAL BENEFITS OF COOPERATION

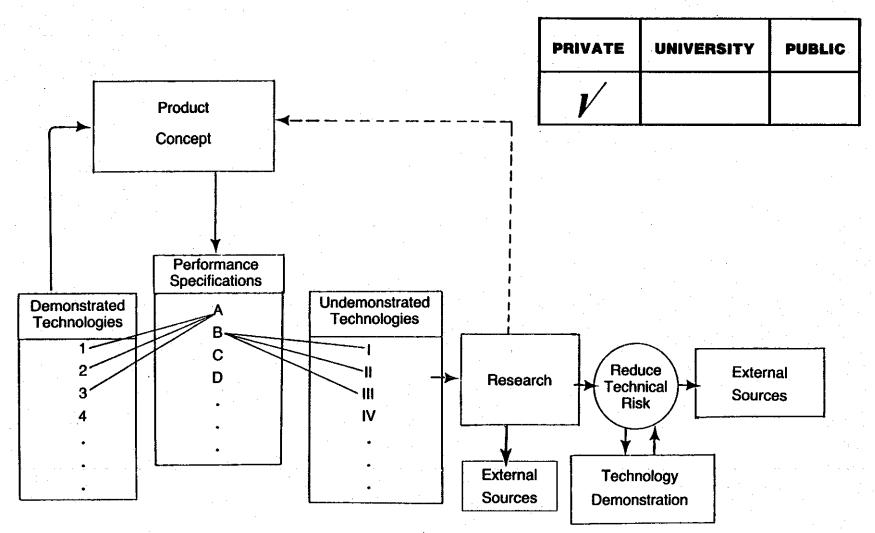
OF COOPERATION	PRIVATE	UNIVERSITY	PUBLIC
BROADER SCOPE OF RESEARCH	1	L	1
• REDUCTION IN DUPULICATIVE WORK	-	1	1
LESS CAPITAL INVESTED PER RESULT	· · ·		
• BETTER USE OF TECHNICAL PEOPLE	-	-	
• RETAIN SCIENTIFIC LEADERSHIP	-	-	-
MORE RAPID INTEGRATION OF TECHNOLOGIES	-		1
• RETAIN TECHNOLOGICAL LEADERSHIP	-		-
INCREASE PROFITS	<i>w</i>		
RETURN ON PUBLIC R & D INVESTMENT		~	1

ß

MOTIVATIONS FOR COOPERATIVE RESEARCH

PRIVATE: RESEARCH OBJECTIVES SPEED TO MARKET **APPROPRIABILITY**

UNIVERSITY: RESEARCH OBJECTIVES


PUBLIC LAB:

RESEARCH OBJECTIVES

PRIVATE FIRM

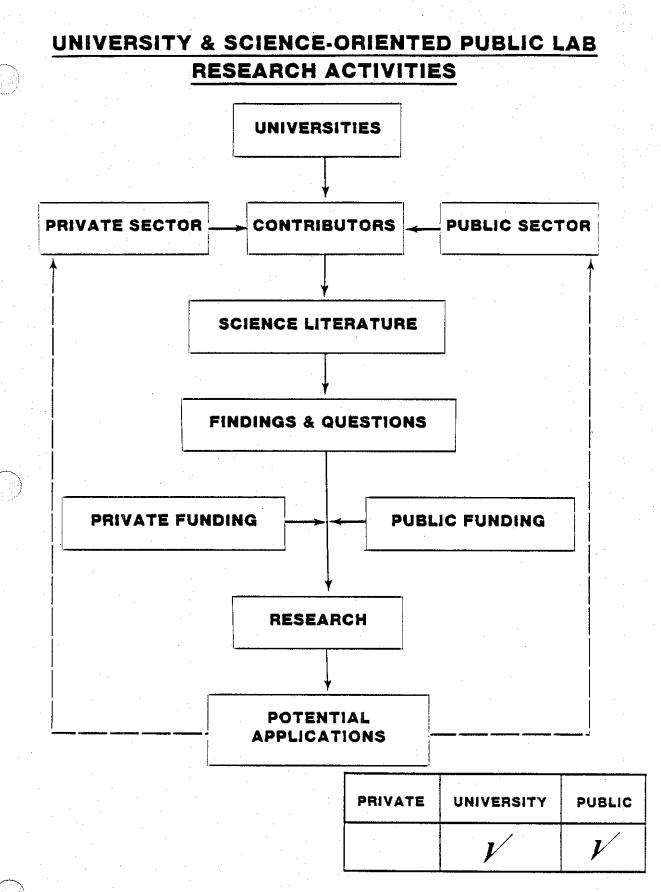
PRODUCT CONCEPTS AND R & D ACTIVITIES

12.

DURATION BETWEEN CONCEPTION AND COMMERCIAL INTRODUCTION FOR SELECTED INNOVATIONS

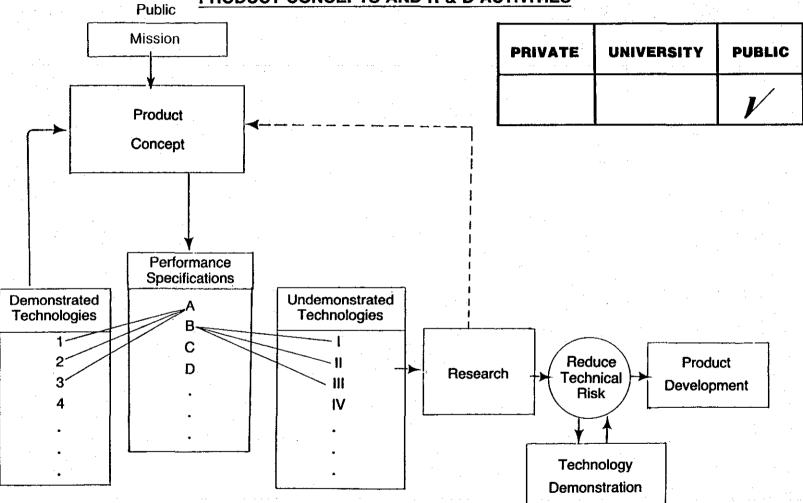
	Year of First Conception	Year Of First Realization	Duration Time
Heart Pacemaker	1928	1960	32
Hybrid Corn	1908	1933	25
Hybrid Small Grains	1937	1955	19
Green Revolution Wheat	1950	1966	16
Electrophotography	1937	1959	22
Input-Output Economic Analysis	1936	1964	28
Organophosophorus Insecticides	1934	1947	13
Drai Contraceptive	1951	1960	9
Magnetic Ferrites	1933	1955	22
Video Tape Recorder	1950	1956	6
Average Duration		• •	19.2

Source: Robert C. Dean, Jr., "The Temporal Mismatch - Innovation's Pace vs. Management's Time Horizon", *Research Management*, May, 1974, p. 4 (from Battelle Memorial Institute Study, 1973).


PRIVATE	UNIVERSITY	PUBLIC
$\boldsymbol{\mathcal{V}}$		

EXAMPLES OF IMITATION BY INDUSTRY RIVALS: MAJOR INVENTIONS

Invention	Inventor#		First Successful Commercial Application	Succeeding Applications	
erodynamic knowledge 1906-08 Lanchester, working privately. ermitting designs of Prandtl, at University of Got- rell-streamlined tingen, and others mostly at universities. Glider designers, working privately, Northrop while working for			Lockheed Vega (1927)	DC-3	
		Lockheed			
Cantilever monopiane	1910-15	Junkers, at Aachen Technische Hochschule, Levavasseur of Antoinette	Junkers F-19 (1919)	Fokker Monoplanes	
Slotted Wing	1917-19	Lachmann, working privately. Handley Page Lid.	Albatross C-72 (1926)	Junkers JU-52	
Slotted flap	1920	Handley Page Ltd., O. Mader of Junkers	Albatross C-72 (1926)	Northrup Gamma Lockheed Orion	
Cowls for radia) angines	1921-28	V. Clark of Dayton-Wright, Townend of the National Physical Laboratory, Weick of NACA	Lockheed Vega (1927)	Northrup Alona Boeing Monomail	
/ariable-pitch propeller	1923-29	Hele-Shaw and Beacham, work- ing privately, but with some government funds. Turnbull, again working privately but receiing govern- ment funds. Caldweil working for the Army, then privately, then for Hamilton-Standard	Boeing 247 (1933)	DC·3	
tressed skin metal onstruction	1914-29	Junkers, at Aachen, then forms company, Dornier, working for Zeppelin company. Rohrbach also working for Zeppelin. Wagner, working for Rohrbach's company. Northrop, head of his own company	Northrop Alpha Boeing Monomail (1930)	DC-3	
let engine	1929-36	Whittle, working privately, von Ohain, working privately. Wagner and Mueller, at Junkers	Boeing 707 (1958)	DC-3	
Swept-back wing for ransonic and super- sonic flight	1935-39	Busemann and Betz at University of Cuttingen	Boeing 707 (1958)	DC-8	
/ariable sweepback or supersonic airplanes	1941-58	Lippisch at Messerchmitt, Stack et al. at NACA, Wallis et al. at Vickers	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
ource: R. Miller and D. Savi <i>fodern Aviation</i> , Rutledge an			UNIVERSITY	PUBLIC	
		l l			



12-10

LAB DEVELOPING PRODUCTS

PRODUCT CONCEPTS AND R & D ACTIVITIES

12

MOTIVATIONS FOR COOPERATIVE RESEARCH

COMMON PROBLEMS

- SCALE
- RISK
- TECHNICAL DEVELOPMENT OF STAFF
- HIGH-WIDE TECHNOLOGY BASE

PRIVATE	PRIVATE UNIVERSITY PUB			
V	V	V		

HIGH TECHNOLOGY BASE

U.S. MANUFACTURERS RANKED BY TOTAL EMBODIED R&D¹ THE DOC3 DEFINITION OF HIGH-TECHNOLOGY PRODUCTS²

SIC CLASS	DESCRIPTION	TOTAL Intensity³ (Percent)
376	Guided Missiles and spacecraft	63.86
365,366, 367	Communications equipment and electronic components	16.04
372,4	Aircraft and parts	15.40
357	Office, computing, and accounting machines	13.65
348	Ordnance and accessories	13.64
283	Drugs and Medicines	8.37
281	Industrial inorganic chemicals	8.23
38 (excluding) 3825	Professional and scientific instruments	5.70
351	Engines, turbines and parts	5.49
282	Plastic and synthetic materials	5.42
	Weighted average all manufacturers	3.30

¹ The total of direct and indirect R&D expenditures.

² High-technology products are defined as those having significantly higher R&D embodies in them. Plastic and synthetic materials have 30 percent more R&D embodies in them than agricultural chemicals (the next group of products in the ranking).

³ Total R&D expenditures, both direct and indirect, as a percentage of product shipments.

4 Aircraft and parts includes aircraft engines.

SOURCE: Davis, L.A. "Technology Intensity of U.S. Output and Trade," Office of Trade and Investment Analysis, U.S. Department of Commerce, February 1982.

HIGH-WIDE TECHNOLOGY BASE

Value of inputs from High Technology Industries Per Dollar of Total Output of High Technology Industries (1)

		Guided Missies & Space Vehicles	Ordnance & Accessories	Industrial Chemicals	Plastics & Synthetic Materials		Engines, Turbines & Parts	Office Computing Accounting Machines	Communications A Electronics	Aircraft & Parts	Professional & Scientific Instruments
SIC Codes	I/O Industry Number	13.01	13.02-13.07	27.01	28	29.01	43	51	56-57	60	62-63
376	13.01	.01362	-	-	•			• ····	-	.00011	•
348	13.02-13.07	.00065	.08089	.00002	.00001	.00003	-		.00002	80000.	-
281	27.01	.00002	.00001	.19229	.28952	02604	.00005	.00018	.00482	00082	.00444
282	28	.00110	.00029	.00332	.02075	-	-	.00146	.01015	.00239	00696
283	29.01		•	•	•	.06151	•	•	•	•	• • •
351	43		.00290			-	.10745		•	.00076	
357	51		•	•	•	•		.06476	.00039	.00205	•
365-7	56-57	.05447	.00888	.00007	.00004	.00020	.00004	.05815	.18528	.05789	.01930
372	60	09302	.00497	.00002	.00001	•	•	.00001	.00001	.15955	00001
38 exc 3285	62 63	.00746	.00021	.00152	.00159	.00207	.00042	.00326	.00129	.00943	05482
	High Tec- nology In- puts Exclud- ing Own- Industry Inputs	.15672	.01726	.00495	.29117	.03834	.00051	.06306	.01668	.07353	.03090
	Number of Supplying Industries	6	6	6	5	4	3	5	6	8	5
· · · ·	Ranking (Based on No. of							· ·			. ¹⁹ 40 - Line Line Line Line Line Line Line Line
·	Supplying Industries)	(2)	(2)	(2)	(3)	(4)	(5)	(3)	(2)	(1)	(3)

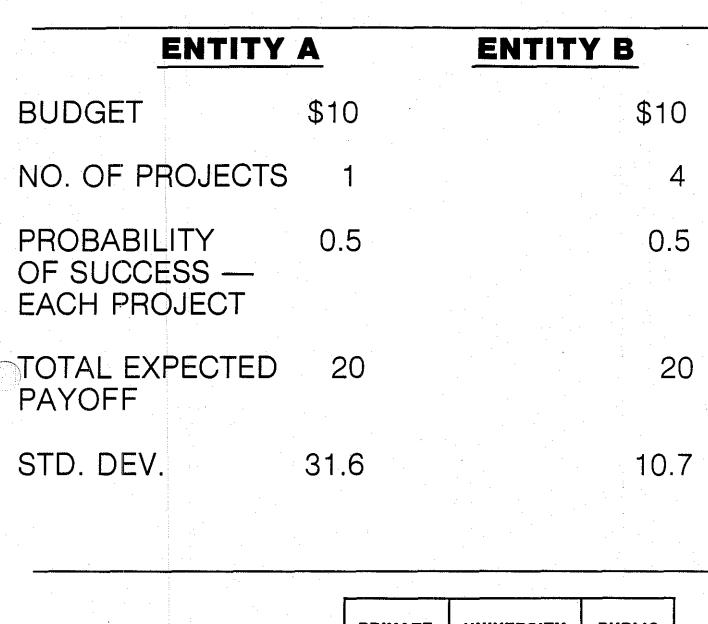
(1) Inputs for an industry are read down the column. All numbers are in dollar per dollar of final output. Source "The Detailed Input Output Structure of the U.S. Economy, 1972" (Volume 1) (1979). (2) Aircraft and part includes aircraft engine.

SCALE

LARGER EFFORT IS MORE EFFICIENT:

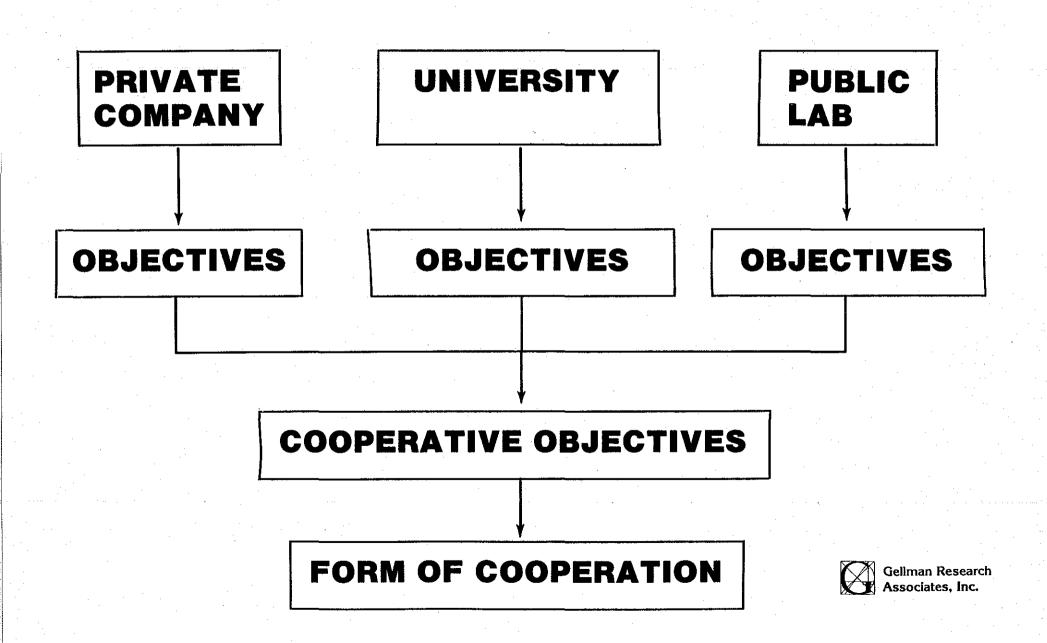
COMPUTATIONAL COSTS

FIXED FACILITIES REQUIRED


SIZE OF EFFORT REQUIRED

PRIVATE	UNIVERSITY	PUBLIC
V	V	V

12 - 15


RISK

PRIVATE	UNIVERSITY	PUBLIC
V	V	V

FORM OF COOPERATION

12

INDUSTRY STRUCTURE

CONDITION

FEW COMPETITORS

CAUSE

SUNK COSTS LICENSE TO OPERATE

NO COOPERATION —INDUSTRY EVOLVING TOWARD SINGLE FIRM

RESULT

DIFFERENTIATED PRODUCTS CONSUMER DEMAND

TECHNOLOGY

PATENTS

COOPERATION —COMPETITION IS INDIRECT

INTERNATIONAL BARRIERS OR SUBSIDY PUBLIC POLICY

COOPERATION TO MEET A COMMON THREAT

TECHNOLOGY CHARACTERISTICS

WIDE TECHNOLOGY BASE

MULTIPLE APPLICATIONS

HIGH COST TO NEXT TECHNOLOGICAL STEP

MULTIPLE DIRECTIONS POSSIBLE TO REACH NEXT TECHNOLOGICAL STEP

MULTIPLE DISCIPLINES TO BE INTEGRATED TO REACH NEXT TECHNOLOGICAL STEP

BASIC RESEARCH REQUIRED TO REACH NEXT TECHNOLOGICAL STEP

SCIENCE LEADERSHIP IN UNIVERSITIES OR PUBLIC LAB

EXAMPLES COOPERATIVE CONSORTIUM **CHARACTERISTICS** MCC COMMON THREAT HIGH COST TO NEXT STEP MULTIPLE DISCIPLINES MULTIPLE APPLICATIONS DIRECT COMPETITORS INVOLVED RISK **BASIC RESEARCH** NASA HIGH COST TO NEXT STEP RISK DIRECT COMPETITORS INVOLVED **APPROACHABILITY** PUBLIC MISSION **BASIC & APPLIED RESEARCH** SEMI CONDUCTOR COMMON THREAT SCIENCE LEADERSHIP IN **UNIVERSITIES** HIGH COST TO NEXT STEP RISK DIRECT COMPETITORS INVOLVED **BASIC RESEARCH**

HOW TO MAKE IT HAPPEN

NO COOKBOOK

DIRECT METHODS

- ANALYZE RESEARCH PROGRAMS FOR POTENTIAL COMMERCIAL APPLICATIONS
 - ON-GOING WORK
 - NEW PROJECTS
- RELY PRIMARILY ON PERSONAL CONTACTS WITH INDUSTRY TO IDENTIFY POTENTIAL COOPERATIVE PROJECTS
- DISCUSS INDUSTRIAL INTEREST WITH INDUSTRY CONTACTS
- FIND COMMON RESEARCH OBJECTIVES
- STRUCTURE AGREEMENTS

INDIRECT METHODS

- ATTEND INDUSTRY MEETINGS
- SPONSOR LABORATORY MEETINGS WITH INDUSTRY
- **PUBLIC INFORMATION**

U|\$9[P|Ī