
HeinOnline

Citation: 7 Bernard D. Reams Jr. Law of E-SIGN A Legislative of the Electronic Signatures in Global and National Act Public Law No. 106-229 2000 iii 2002

Content downloaded/printed from HeinOnline (http://heinonline.org) Sun Apr 21 23:14:22 2013

- -- Your use of this HeinOnline PDF indicates your acceptance of HeinOnline's Terms and Conditions of the license agreement available at http://heinonline.org/HOL/License
- -- The search text of this PDF is generated from uncorrected OCR text.

Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

October 1987

NTIS order #PB88-143185

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) [iii] 2002

Recommended Citation:

U.S. Congress, Office of Technology Assessment, Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information, OTA-CIT-310 (Washington, DC: U.S. Government Printing Office, October 1987).

Library of Congress Catalog Card Number 87-619856

For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report)

Foreword

Government agencies, private sector organizations, and individual citizens are increasingly using sophisticated communications and computer technology to store, process, and transmit valuable information. The need to protect the confidentiality and integrity of such data has become vital. This report examines Federal policies directed at protecting information, particularly in electronic communications systems.

Controversy has been growing over the appropriate role of the government in serving private sector needs for standards development and, particularly, over the appropriate balance of responsibilities between defense/intelligence agencies and civilian agencies in carrying out this role. In defining these roles and striking an appropriate balance, both private sector needs, rights, and responsibilities, on one hand, and national security interests, on the other hand, need to be carefully considered.

This report examines the vulnerability of communications and computer systems, and the trends in technology for safeguarding information in these systems. It reviews the primary activities and motivations of stakeholders such as banks, government agencies, vendors, and standards developers to generate and use safeguards. It focuses on issues stemming from possible conflicts among Federal policy goals and addresses important trends taking place in the private sector.

OTA prepared the report at the request of the House Committee on Government Operations and the Subcommittee on Civil and Constitutional Rights of the House Committee on the Judiciary. It is the second component of OTA's assessment of new communications technologies. The first component, *The Electronic Supervisor: New Technologies, New Tensions*, was published in September, 1987.

In preparing this report, OTA drew upon studies conducted by OTA project staff, contractor reports and consultants, a technical workshop, interviews with Federal and private sector representatives, and those involved in research, manufacturing, financial services, consulting, and technical standards development. Drafts of this report were reviewed by the OTA advisory panel, officials of the National Security Agency and the Department of Defense, the National Bureau of Standards, the General Services Administration, the Department of the Treasury, and other government agencies, and by interested individuals in standards setting organizations, trade associations, and professional and technical associations.

OTA appreciates the participation and contributions of these and many other experts. The report itself, however, is solely the responsibility of OTA,

John H. Sibbone

JOHN H. GIBBONS Director

##

Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information Advisory Panel

Granger Morgan, Chairman Carnegie Mellon University

Peter Arment Division of Telecommunications State of New York

Robert R. Belair Kirkpatrick & Lockhart

Jerry J. Berman Chief Legislative Counsel American Civil Liberties Union

H.W. William Caming Consultant

Robert H. Courtney, Jr. President RCI

Harry B. DeMaio* Director, Data Security Program IBM Corp.

John Harris Special Assistant to the President American Federation of Government Employees (AFL-CIO)

James M. Kasson Vice President Rolm Corp.

Steven Lipner Digital Equipment Corp.

Gary T. Marx Professor of Sociology Massachusetts Institute of Technology Robert Morris** Chief Scientist National Computer Security Center National Security Agency

Susan L. Quinones Condello, Ryan, Piscitelli

Virginia du Rivage Research Director 9 to 5 National Association of Working Women

Forrest Smoker Director Corporate Telecommunications North American Phillips Corp.

Willis H. Ware Corporate Research Staff The Rand Corp.

Lawrence Wills Director, Data Security Program IBM Corp.

Fred H. Wynbrandt Assistant Director Criminal Identification and Information Branch State of California

"Retard Replaced by Lawrence Wills.

**F; x-officio.

NOTE: OTA appreciates and is grateful for the valuable assistance and thoughtful critiques provided by the advisory panel members. The panel does not, however, necessarily approve, disapprove, or endorse this report. OTA assumes full responsibility for the report and the accuracy of its contents.

١y

OTA Project Staff Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

John Andelin, Assistant Director, OTA Science, Information, and Natural Resources Division

Fred W. Weingarten, Program Manager Communication and Information Technologies Program

> Project Staff Charles K. Wilk, *Project Director* Karen G Bandy, *Analyst* Jim Dray, Research Analyst Robert Kost, *Analyst* Mary Ann Madison, *Analyst* Joan Winston, *Analyst* Michael McConathy, *Intern* Paul Phelps, *Editor* Jeffrey P. Cohn, *Editor*

Administrative Staff Elizabeth A. Emanuel, Administrative Assistant Audrey D. Newman, *Administrative Secretary* Sandra Holland, *Secretary* Rebecca A. Battle, *Secretary*

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) [viii] 2002

Contents

Page Chapter 1. Executive Summary
Chapter2. Introduction
Chapter3. The Vulnerabilities of Electronic Information Systems
Chapter4. Security Safeguards and Practices
Chapter5. Improving Information Security
Chapter6. Major Trends in Policy Development
Chapter7. Federal Policy Issues and Options151
Appendix A. Requesting Letters163
Appendix B. National Policy on Protection of Sensitive, but Unclassified Information in Federal Government Telecommunications and Automated Information Systems
Appendix C. The Data Encryption Standard
Appendix D. Message Authentication, Public-Key Ciphers, and Digital Signatures
Appendix E. Acronyms
Appendix F. Contributors and Reviewers

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) [x] 2002 Chapter 1 Executive Summary

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) [xii] 2002

CONTENTS

1	Page
The Need for Information Security	. 4
Safeguard Technology	
Users' Needs and Actions	
The Role of the Federal Government	. 7
Policy Alternatives +	. 9

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 2 2002 As society becomes more dependent on computer and communications systems for the conduct of business, government, and personal affairs, it becomes more reliant on the confidentiality and integrity of the information these systems process. Information security has become especially important for applications where accuracy, authentication, or secrecy are essential.

Today's needs for information security are part of a centuries' long continuum that shifts in emphasis with changing technology and societal values. Modern electronic information systems are expanding the need for both famillar and new forms of information security.

Today's needs for information security are a part of a centuries' long continuum.

Developing adequate information security technology is a challenging task. This task is further complicated since some of these evolving needs can only be satisfied with technology that must itself be kept secret, according to Department of Defense sources, because revealing it could be damaging to U.S. intelli-gence operations. This situation raises the practical question of whether safeguards designed for use by defense and intelligence agencies can meet the needs of commercial users without jeopardizing U.S. intelligence objec-tives, i.e., whether the National Security Agency (NSA) can reconcile its traditional secret posture with the openness needed to solve nondefense problems. It also raises the broader issues of the appropriate role of defense and intelligence agencies in civilian matters, and how openness and free market forces can coexist with secret operations and controls on sensitive information.

The terms intelligence and intelligence operations are used throughout this assessment to refer to signals intelligence.

Chapter 1 Executive Summary

Policy for information security, long dominated by national security concerns, is now being reexamined because of its broadening effects on nondefense interests. At the center of the current controversy is the appropriate role of the Federal Government in information security. The immediate policy questions focus on whether NSA, primarily an intelligence agency, or the National Bureau of Standards (NBS), a civilian agency, should be responsible for developing information security for nondefense applications. A fundamental issue is how to resolve conflicts involving the boundary between the authority of the legislative and executive branches to make policy when national security is a consideration; a topic with implications extending well beyond the narrow confines of information security policy.

A separate, but related dimension to policymaking involves recent efforts to provide additional Government controls on unclassified information in computer databases, some Federal, some commercial. Proponents of greater Government controls argue that these databases make information so readily available to foreign governments, competitors, and those having criminal intent, that uncontrolled access to them is a threat to national security.

Congress is responding to these issues by examining alternative Federal roles in information security. Each of the three basic options for providing leadership-through NSA, NBS, or greater reliance on the private sector—has its own particular drawbacks and none is likely to completely satisfy all national objectives.

There are a number of national interests to be accommodated by policy makers. An optimum outcome would maximize the ability of free market forces to develop and apply technology to meet users' diverse and unfolding needs for information safeguards, while avoiding unnecessary restrictions on trade, innovation, and the free flow of information as well as compromises to the Nation's security.

3

4 . Defending Secrets, Sharing Data: New Locks and Keys for Electron/c In formation

THE NEED FOR INFORMATION SECURITY

The need for information security has existed for thousands of years, but the advent of electronic information systems—telegraph and telephone, sound and image recording, and computers and databases—has reemphasized the need for traditional safeguards and created a need for new ones. Early concerns tended to focus on controlling access to information and protecting its confidentiality.

Modern computer and communications systems are being used in ways that often require those using them to authenticate the accuracy of data, verify the identity of senders and receivers, reconstruct the details of transactions, and control access to sensitive or private data. As the use of these systems increases, the vulnerabilities, threats, and risks of misuse have become clearer, and information security has become a prominent issue for many Government agencies and private users.

Electronic information systems—telegraph and telephone, sound and image recording, computers and databases reemphasize the need for traditional safeguards and create needs for new ones.

The computer and communications technologies on which these information systems are built, however, were not developed originally with information security in mind. They were designed for efficient and reliable service in the presence of accidental error, rather than intentional misuse, and little attention was given to protecting confidentiality. As one result, the public communications network has always been vulnerable to exploitation by those with appropriate resources (see below).

Technology can increase or decrease the vulnerability of communications to misuse. Microwave radio and cellular telephones have both Information security was not a key factor in the design of most computer and communications systems. As a result, some forms of unauthorized access, such as wiretaps, intercepting mobile telephone conversations, or logging into computers with easily guessed passwords, can be achieved with limited resources.

increased vulnerability; optical fibers have decreased it. Still greater changes may be ahead as digital communications come into wider use.

Increases in computing power and decentralization of computing functions have increased the vulnerability of computer and communications systems to unauthorized use. Two types of misuse should be distinguished: misuse by those not authorized to use or access systems and misuse by authorized users. For many public and private organizations, the latter problem is of greater concern.

The level of effort, expense, and technical sophistication needed to gain unauthorized access to computer or communications systems, even when the system being attacked employs no special safeguards, can vary widely. Some forms of covert access, such as wiretaps, intercepting mobile telephone conversations, or logging into computers with easily guessed passwords, can be achieved with very limited resources. Others, such as those intended for targeted and consistently successful unauthorized access, can require greater resources due to inherent barriers in the design of these systems. Systems protected by appropriate safeguards can deny access even to dedicated foreign intelligence agencies.

Users of computer and communications systems have widely different perceptions of the threats against which protection is needed. Some users protect their systems only against unintentional error or amateur computer hackers. Others guard against misuse by their own employees, outsiders, or the sophisticated intelligence agencies of foreign countries.

Many businesses are concerned with the integrity of certain of their computer information, but not greatly concerned with threats to the confidentiality of their domestic communications.

There are few publicized cases of communications interception and most of these deal with the interception of government communications by foreign intelligence agencies. Not surprisingly, most commercial and private users, under ordinary circumstances, are not greatly concerned about their communications, particularly within the United States, being intercepted by foreign governments or others. Indeed, many businesses are concerned primarily with the integrity of certain of their business information and, in other cases, with the confidentiality of their sensitive information.

Early computer systems were designed to be used by trained operators in reasonably controlled work environments; therefore, only local access to the systems was of concern. Today's systems, in contrast, are often designed to be used by, almost literally, anyone from anywhere. With this ease of access to computers, new problems have emerged, both from hackers and other unauthorized users, and from employees authorized to use the systems. Available data suggest that the damage done by computer hackers to poorly safeguarded systems is less severe than originally thought, and that actual and potential misuse from employees who are authorized to use the systems is far more significant.

On the other hand, NSA is concerned with foreign intelligence gathering, a concern that Ch. I-Executive Summary .5

has motivated it to launch programs to improve the security of nondefense computer and communications systems.

Thus, even though virtually all users have concern for some combination of confidentiality, integrity, and continuity of service, the business community and the Government agencies that deal with it often have a very different outlook and need than defense and intelligence agencies when it comes to safeguarding information in computer and communications systems. This difference is one reason why some of the business community has been reluctant to accept safeguard technologies based on NSA's assessment of needs or that are tightly controlled by NSA.

Safeguard Technology

The private sector is developing a number of ways to safeguard information in computer and communications systems. These include technologies to encrypt data to make it confidential and to control access to computer systems (such as with personal identification tech-

Important techniques are emerging to improve the security of information in these systems including technical means to verify the identities of the senders of messages, authenticate their accuracy, and ensure confidentiality.

niques), as well as to audit system activity and other administrative procedures. In many cases, commercial safeguards for these systems are still evolving, as are users' understanding of their needs for them.

The use of information safeguards, properly applied, can vastly increase the level of resources required for potential adversaries to successfully gain access to protected systems. Some safeguards require two or more people, 6 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

Innovation is especially important for the evolution of new applications of information security.

often trusted employees, to collude in order to gain unauthorized access, while others leave audit trails to identify how the system was misused and by whom. But technical safeguards alone cannot protect information systems completely; effective management policies and administrative procedures are also needed.

Safeguard products are based both on adaptations of existing technology and on innovations. Some of the approaches to controlling access, for example, rely on the use of passwords or hand-geometry measurements. Techniques for authenticating messages include those that make use of newly developed mathematical techniques called public-key cryptography and electronic procedures for providing "digital signatures" to verify the identity of the sender of a message.

As is already becoming clear with cryptography, innovation is especially important for the evolution of new applications of information security. The capabilities now evolving will allow advances in the way many electronic transactions take place, from digital signatures and legally enforceable electronic contracts to improved individual and corporate accountability and assured confidentiality of transactions. The potential of cryptography and related mathematical techniques for transforming the ways in which automated transactions

Some new safeguard techniques have only begun to be explored, but show promise for broad applications in commerce and society. are accomplished has only begun to be explored for applications in finance, commerce, law, and government.

Users' Needs and Actions

Commercial and other users want greater information security to reduce fraud, embezzlement, and errors; cut the costs of operations; and protect proprietary and private data. Users have begun to incorporate information safeguards in a gradually expanding range of applications. For example, information security is being applied in the banking industry to reduce errors and opportunities for fraud, and in other industries as part of an increasing reliance on electronic, rather than paper-based, transactions. These electronic transactions allow businesses to simplify paper work and reduce inventory costs,

Although there are significant differences in the needs for information security even among users within the same industry, civilian users often focus on data integrity. They also tend to be especially sensitive to the importance of the ease of use and cost-effectiveness of safeguards. Many defense needs, too, resemble those of civilian users, but in addition, some defense functions, especially intelligence activities, have a primary need for confidentiality. These latter needs must be ensured, even if they entail higher cost or lowered ease of use.

Business users have tended to consolidate their requirements for common information safeguards through voluntary participation in the activities of U.S. and international organizations that develop open public standards. In contrast, NSA sets its own standards in a process that is sometimes open to the public (as is typical for computer security) and sometimes not (as is typical for communications security). These and other differences raise the question of whether information safeguards designed by and for the defense and intelligence agencies are well suited to the needs of commercial and other users.

THE ROLE OF THE FEDERAL GOVERNMENT

The Federal Government has played an active role in the development of information safeguards. NSA was established to unify U.S. signals intelligence operations against foreign communications and to protect U.S. military, intelligence, and diplomatic communications against foreign government intelligence gathering efforts. As NSA's concerns expanded to include computer security, the agency has begun to provide technological leadership for civilian uses of information safeguards, presumably in ways that minimize the impact on its foreign intelligence operations.

Federal policy for information security has long been dominated by national security interests and controlled by DoD and NSA.

In addition, the National Bureau of Standards has played a central role in setting information security standards for civilian Government agencies and certifying commercial products. NBS's role stems from the Brooks Act of 1965, which authorized it to set standards for computers used by Government agencies.

A civilian agency, NBS, has become active in the development of computer security standards since the mid-1970s. Recent policy directives, however, have shifted control back to DoD and NSA, raising questions of the boundary between civilian and military authorities. its activities in providing standards and specifications, certifying equipment, and developing secret cryptographic algorithms, have made the Government influential in the decisions of some industries about their use of information safeguards.

sis for many private cryptographic standards. It is also the standard in use by other civilian Government agencies. In addition, both NBS and NSA have facilitated the entry of cryptographic-based safeguards into the market by certifying and endorsing commercial products and developing guidelines for their use.

In the mid-1980s, however, changing Government policies provided *new* direction for the Federal role in, and leadership for, information security. National Security Decision Directive 145 (NSDD-145), issued in 1984, expanded Federal concerns to include "safeguarding systems which process or communicate sensitive information from hostile exploitation, established a high-level interagency group to implement the new policy, and assigned key responsibilities to the Department of Defense and NSA,

One result of NSDD-145 was to authorize NSA to develop information safeguards for Government agencies to protect unclassified information. In effect, this meant that responsibility for certifying DES as a national standard and other safeguard technologies was transferred from NBS to NSA. In a major shift in policy, NSA announced in 1986 that it would no longer certify DES-based products for Gov-

There has been controversy about DoD restrictions on the export of cryptographic equipment embodying classified technology.

NBS, with the active technical support of NSA, spearheaded the development of a national standard for cryptography, the Data Encryption Standard (DES). DES, which was adopted by NBS in 1977, has become the ba-

8 Defending Secrets, Shaaring Data: New LOCKS and Keys for Electronic /formation

There are significant differences in users' needs for information security even among users within the same industry, which raises the question of whether information safeguards designed by and for defense and intelligence agencies are well suited to the needs of commercial and other users.

ernment use beginning in 1988. Instead, NSA said it will supply its own, secret cryptographic designs for use by U.S. companies and civilian Government agencies—a move that has raised some industry concerns because it might result in restrictions on the use of equipment embodying these designs and it might also allow NSA itself to eavesdrop on corporate communications.

This shift of responsibilities from NBS to NSA raised several other questions. One involves the efficacy of NSA-developed standards and guidelines for users outside the national security community. Another question concerns the scope of NSA's activities in light of NBS's legislated responsibilities under the Brooks Act.

In a later directive² intended to implement NSDD-145, the National Security Council placed

In the current reexamination of policy on information security, the immediate policy question is whether NSA or NBS should be responsible for nondefense applications. new controls on what it called unclassified, but sensitive information in various Government information systems and commercial databases. These efforts raised such a protest from scientific and civil liberties organizations and the business community that the directive was rescinded during the course of congressional hearings in 1987 and NSDD-145 itself was put under review.

The expanding sphere of national security concerns embedded in information security policy is now seen as competing with other national interests and affecting basic principles such as the appropriate balance between defense and civilian authority and public access to information.

These changes in Federal policies on information security indicate an expanding sphere of "national security" concerns—a concept whose definition is subject to interpretation and change. The changes point out clearly that Federal policy for information security, until recently a topic of little concern beyond the Government's defense and intelligence communities, now has significant impact on much broader areas of national interest, including commerce, innovation, free flow of information, and civil liberties. They also indicate that tensions are likely to recur as the use of automated information systems continues to expand.

Longstanding fundamental issues include how to resolve conflicts involving the boundary between the authority of the legislative and executive branches when national security is a consideration and the process by which these policies are developed.

National Policy on Protection of Sensitive, but Unclassified Information in Federal Government Telecommunications and Automated Information Systems, National Security Council, Oct. 29, 1986.

Ch. I-Executive Summary .9

POLICY ALTERNATIVES

Federal policy for the security of information in computer and communications systems seeks to achieve a number of objectives ranging from protecting national security to fostering development of private sector competence to meet its own needs. Policy might also seek to establish a structure within the Government that can provide leadership and standards both for defense and intelligence purposes and for the business community, Although there are often strong differences of opinion on the merits of specific Federal policies, there seems to be broad agreement on the types of goals that such policies might aim to achieve. Some of these goals are to:

- foster the ability of the private sector to meet the evolving needs of businesses and civilian agencies for information safeguards;
- minimize risks to intelligence capabilities resulting from independent, private sector developments;
- clarify the roles of Federal agencies concerning safeguard technology, particularly those of NSA and NBS;
- promote competition, innovation, and trade;
- separate, where practical, defense and intelligence agencies' missions from those of the private sector and civilian agencies; and.
- minimize or reduce the tensions between Federal policies and private sector activities.

The basic alternatives for policy center around the relative roles of NBS, NSA, and the private sector in providing leadership in the technological development and use of safeguards for unclassified electronic information. The options are:

Option I. Centralize Federal activities relating to safeguarding unclassified information in Government electronic systems under the National Security Agency.

Option 2. Continue the current practice of de facto NSA leadership for communications and computer security, with support from the National Bureau of Standards. Option 3. Separate the responsibilities of NSA and NBS for safeguard development along the lines of defense and nondefense requirements.

The bill currently being considered by Congress (HR 145) is a variation of option 3 and is an attempt to resolve, by legislative means, policymaking for information security. One of its principal results is that it would clarif y the roles of NBS and NSA, and tend to separate civilian and defense interests. Among its main shortcomings is the absence of a capability to support unclassified research in safeguard technology. This capability, perhaps more than any other single factor, would strengthen the ability of the private sector to satisfy its own needs for information security and reduce dependence on the Government.

In option 3, additional choices can be made.

A. Provide Federal support to the private sector to specify, develop, and certify safeguards for business and civilian agencies. NBS would be the focal point for all safeguard standards for unclassified information; NSA would remain the focal point for classified information.

E. Allow free market forces to develop safeguards for nondefense needs, with NBS acting as the focal point for Government needs for safeguards for unclassified information. NSA would satisfy the requirements of Department of Defense agencies and their contractors, and provide technical advice for other users.

Each of the three broad options has shortcomings. Essentially, the choice depends on whether policymakers prefer to tolerate greater tensions, a blurred division between defenseintelligence and civilian matters, and more constrained private sector technical capabilities, or to take larger risks that intelligence capabilities will be damaged by proliferation abroad of U.S. safeguard technology.

OTA's evaluation indicates that centralizing authority in NSA for developing safeguards for unclassified information in Government systems (option 1) or maintaining the current, blurred relationship between NBS and NSA (option 2) would be the least effective in minimizing tensions and in separating defense and intelligence missions from civilian matters. On the other hand, U.S. foreign signals intelligence gathering operations may be poorly served if NSA is not party to all safeguard development (option 3).

Independent of institutional arrangements in the United States, however, there are also risks to our intelligence that stem from sources outside the control of U.S. policy, such as the policies of foreign governments, actions taken by international business interests, and the effects of foreign innovation.

There are inherent tensions between U.S. intelligence interests and evolving nondefense needs for information security technology. In addition, there are enduring conflicts involved in balancing national security and broader national interests. Potential conflicts also exist between the tendency to restrict access to unclassified, but sensitive information, and concern for the free flow of information and constitutional rights. Perhaps the optimum result that legislation should be expected to achieve is to provide a clear policy basis against which to measure future inbalances.

In addition, any option that raises the cost of safeguards, impairs user operating efficiency, or results in incompatible standards for defense and non-defense users, will discourage the development and use of commercial products.

There are no options for Federal policy that clearly and simultaneously foster all national objectives without costs to others. The alterFor policies to meet the evolving needs of the Nation, they will have to be flexible and balance various national interests.

natives for implementing policy differ mainly in the source of national leadership for the development and nondefense use of safeguard technology, the level of Federal encouragement or control of private sector innovation, and in flexibility to adjust to changing needs of commerce and society.

Three main observations result from OTA's analysis:

- Excessive accommodation of either commercial or defense and intelligence concerns could prove damaging to overall U.S. interests.
- 2. Policies that are inflexible, based primarily on defense and intelligence interests or on Government control of technological advances in the private sector, are likely to create substantial tensions with the widening range of other national and international interests affected by them.
- A process for weighing competing national interests is needed. Centering policymaking in the Department of Defense alone and, in particular, NSA would make that difficult.

Chapter 2 Introduction

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 12 2002

.

CONTENTS

P	Page
Society's Changing Needs for Information Security	Ĩ3
Information Security and Government Policy	15
Importance of Information Security Technology and Policies	16
Business Interests in Information Security.	19
Conclusions	. 19

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 13 2002

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 14 2002

On a day nearly 4,000 years ago, in a town called Menet Khufu bordering the thin ribbon of the Nile, a master scribe sketched out the hieroglyphics that told the story of his lord's life and in so doing he opened the recorded hislife and HI SO GALLS tory of cryptology. -David Kahn, The Codebreakers: The Story of Secret Writing

Information technology is revolutionizing society as profoundly as mechanical technology did in creating the industrial revolution. As a result, we are increasingly dependent for society's everyday functioning on electronic ways to gather, store, manipulate, retrieve, transmit, and use information. By all accounts, the importance of automated information systems and the communications systems that link them will continue to increase and transform the way we conduct our government, business, scientific, and even personal affairs.

This increasing dependence on information technology is creating a need to improve the confidentiality and integrity of electronic information, i.e., its security, so that computer and communications systems are less vulner-

Chapter 2 Introduction

able to intentional and accidental error or misuse. This will allow us to use the new systems with confidence in a widening range of applications, such as electronic contract negotiations, with assurance that private, proprietary, or intellectual information entrusted to them will be properly protected.

Progress is being made in developing techniques for satisfying these needs. However, both the pace and direction of this progress will be affected by two factors:

- the traditional use of Federal information security policy, often as a means of implementing national security goals; and
- .the need to accommodate the variety of national interests that are affected by Federal policy on information security.

To put the topic in perspective, just as information security is a small, but vital part of the larger framework of information technology, Federal policy on information security is a reflection of broad national interests, rather than that of national security alone.

SOCIETY'S CHANGING NEEDS FOR INFORMATION SECURITY

The need for information security is not new. It dates back hundreds, even thousands, of years. Methods for conveying confidential messages were used in ancient Greece and much of the Western world by kings, generals, diplomats, and lovers. Today, the governments of most developed nations make extensive use of encoding techniques to keep their sensitive electronic communications secret.

Technology itself has long played a leading role in causing certain attributes of information security to become highlighted. The introduction of the telegraph brought concern about eavesdropping. Inexpensive sound and video recording capabilities raised concerns about unauthorized reproduction. And the proliferation of electronic storage quickly brought questions of how to prevent misuse of electronic data. Indeed, most of the attributes of information that are of concern today ---confidentiality, accuracy, accountability-have long existed. Technological advances have not only modified their importance but have also introduced fundamentally new issues.

Today's technology provides new capabilities that raise both familiar and new concerns for security. High on the list of current concerns are the need for controls on capabilities for accessing, altering, and duplicating electronic data, and the ease of retrievability and

these news are said to gain upon the nation the 1647' 578.914 for 411. 454 is 979. 996. 607. 935. fall 789. the ABL is 474 872. and an 223. 435. g. 8. of some sort is not impossible. The sog is alarmed, & the tadiance at this moment for the Dog 139 1390 is on their 1041, 1317, 503, 1150. I cannot write these things in a public dispatch les unit 598 into a 10397. 207 and 804. 766. 1525

Segment of original letter (top) and translation (bottom) from Thomas Lefferson to James Madison, August 2, 1787. Feproduced from 7be Papers of James Madison, vol. 10, 1767-1785, pp. 124-126, Library of Congress.

These views are said to gain upon the halfion. The kings passion for drink is divesting him of a litespect. The queen's detasted and an explosion of some soft is not impossible. The ministry is alarmed, & the surest reliance at this moment for the public passe is on their two humored (housend man, i cannot write these things in a bublic discalch because they would get into a newspaper and come back here.

searchability of databases. Still other concerns include ensuring the accuracy of messages and verifying their origin, and providing means for auditing or reconstructing transactions. These concerns have arisen both in Government agencies and in businesses worldwide because traditional physical security measures are limited in their ability to prevent misuse of information in today's automated world.

In addition, as information technology increasingly substitutes for paper-based systems, it is important to retain familiar capabilities of the older technology. In fact, many of the developments in security are attempts to imbue in modern information systems parallels to the more familiar safeguards and procedures of paper-based and face-to-face forms of business transactions that we have become accustomed to using—as discussed later.

Some security techniques are adaptations of earlier ones, while others are genuine innovations. Modern equivalents of such traditional security tools as passwords, notary public

"seals, codebooks, physical identification, separation of authority, and auditable book-keeping procedures are all being used or considered today, separately or in combination, to contain misuse of electronic information. Prominent among the recent innovations are public-key cryptography, and the "zero knowl-edge' proof. The former may be used to establish private communications between previously unacquainted parties, as well as to provide the electronic equivalent of a personal signature. The latter can be used to demonstrate that a person knows a piece of information without revealing the information in the process. For example, it could be used to demonstrate knowledge of a solution to a "hard problem" without revealing anything about the specific so-lution method. Each of these innovations have broad implications for new applications of information technology.

Such encryption-based safeguards provide a basis for today's sophisticated information security technology and an expanding range

Ch. 2-Introduction •15

of commercial applications. Banks are begining to use these technologies to safeguard electronic fund transfers. Similarly, some companics are beginning to *use* them to protect the confidentiality y of electronic mail and to replace paper-based business transactions with less expensive electronic equivalents. Expanding these capabilities to include proof of message receipt and acceptance, and protection of the anonymity of those taking part in transactions, is likely to require further innovation.

INFORMATION SECURITY AND GOVERNMENT POLICY

Federal policy for the security of electronic information was, until recently, an obscure topic having little public interest. In the first place, virtually all such policy was related to the secrecy of military, intelligence, and diplomatic information. Second, the authority and expertise for keeping information secure rested with defense and intelligence agencies that normally do not engage in open policymaking. Moreover, except for defense contractors, Federal policies had little effect on the public or on private businesses.

The Government's national security focus created an incentive to control the proliferation abroad of communications safeguard products and, in fact, to control the technology itself. The purpose was to deny foreign adversaries access to valuable U.S. technology and to protect the viability of U.S. foreign intelligence operations.

During the 1970s, the National Bureau of Standards (NBS) began to develop computer security standards for use by Government agencies based on its authorities stemming from the Brooks Act of 1965. In 1977, with technical assistance from the National Security Agency (NSA), NBS adopted the Data Encryption Standard (DES) as the national standard for cryptography. For the first time, a published cryptographic standard became available for civilian agencies, and it quickly was adopted by business users and the American National Standards Institute as the basis for many industry standards. NBS also began to validate commercial products implementing DES, thereby increasing users' con-fidence in the products' conformance with the Federal standard. As a consequence, DES is gradually becoming used for many applications.

Interest in information security is now worldwide and an active area of research and development in western European countries and Japan. DES has been considered as an international standard during recent years in forums composed of representatives from international businesses and governments (see ch. 5).

The proliferation of information technology has made more sensitive data accessible to more users, thereby creating another form of new vulnerability to misuse. In order to limit potential damage to U.S. interests, particularly from foreign intelligence agencies, the executive branch has sought to control access to unclassified information that it deemed sensitive. Although the definition of such information has been open to considerable debate that is still unresolved, it may include proprietary information filed with defense agencies and the Environmental Protection Agency, economic data collected by the Commerce and Treasury Departments, and personal data kept by the Department of Health and Human Services.

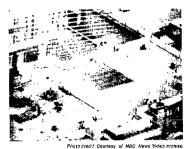
Policy directives issued by the executive branch in 1984 and 1986, and ensuing congressional hearings in early 1987, have significantly increased public concern over Federal information security policy. The expanding pattern of defense-intelligence interests as a central focus in the formulation of policy is seen as competing with other major national interests and has become the subject of public debate. The focus of the debate has been on the potential impact of these policies on some fundamental tenets of American government: the separation of and appropriate balance between defense and civilian authority, constitutional rights, open science, and Government controls on public access to information. The debate also raises the question of how to resolve conflicts involving the boundary between the authorities of the legislative and executive branches in making policy when national security is a consideration. On a more practical level, there are also serious misgivings about the applicability of the security approach taken by the Department of Defense (DoD) to the needs of the private sector.

At the same time that these Federal policies and their effects have been unfolding, trends are visible that may significantly influence commerce and other private sector interests.

IMPORTANCE OF INFORMATION SECURITY TECHNOLOGY AND POLICIES

Interest in information security technology now clearly extends beyond the Federal Government to the private sector as well. Its importance to business and society cannot be gauged adequately by the dollar amount of sales of products, but by the range of applications that the technology makes possible.

Safeguard technology is likely to become a mainstay for facilitating tomorrow's automated world of finance, commerce, and law, much as automated message authentication and verification are now becoming essential for the banking industry worldwide. These technologies are used to authorize transactions, authenticate users, verify the correctness of messages and documents, certify that legitimate transactions have occurred and identify the participants, and protect individual and corporate privacy.


Such applications are likely to be used to establish a legally valid electronic equivalent of the centuries-old, paper-based systems for authorizing access to information, identifying parties to agreements, authenticating letters and contracts, ensuring privacy, and certifying value. In this sense, they will replace such traditional safeguards as letters of introduction, signatures, and seals, and assume an importance difficult to foresee from the limited applications of today.

Both Government and industry are interested in improving the security of information they own or are entrusted with. Two major trends reflect these interests and are bringing attention to the direction of Federal policy. One concerns the Federal Government's need to keep an increasing amount of unclassified information confidential while, at the same time, gathering intelligence from other countries. The question of what information ought to be kept confidential, or have access to it controlled, is not well defined, but subject to judgments concerning potential damage to the Nation's security; examples of such information might include corporate proprietary data that could benefit foreign competitors or data useful to terrorists. The other trend is the evolving and growing need of the private sector to safeguard certain of its information and information resources from theft, destruction, or other misuse.

Federal policy has been formulated both by the executive and legislative branches, sometimes with similar purposes. Policy in information security has often been set by the President, based on national defense needs. This has invariably led to a major role for the DoD. Legislation, on the other hand, has also been used to establish policy for information security. The latter has often been based on other national interests, such as the privacy of telephone communications and of data in Government computer systems. Such laws typically have involved civilian agencies in their implementation.

Society's needs and the new demands stimulated by technology are causing these sepa-

Ch. 2-introduction •17

Roof of Soviet embassy in Washington D.C. showing antennas

rate policy paths to converge. With this convergence, major stresses are becoming visible in the balancing of competing national interests and with the process by which policy is developed.

The focus of information security policy on the military, intelligence, and diplomatic interests of Government has particular significance for the issues of today for two interrelated reasons. First, responsibility for protecting the security of Government electronic information is consolidated within the defense and intelligence communities, where NSA has been given the lead responsibility. The second concerns the broadening scope of executive branch actions taken for reasons of national security. There is a tendency for this concern to include unclassified, but sensitive information.

NSA was created in 1952 as an agency of DoD by secret Executive Order. For decades its existence was not made public, and the only extensive public description of its operations were provided in the book, *The Puzzle Palace*, which the agency tried to prevent from being published. 'NSA has been the subject of considerable controversy during the past decade due to its secret operations.'

'James Bamford, The Puzzle Palace (New York, NY: Penguin Books, 1983). 'Ibid. NSA functions are a consolidation of missions previously performed by each of the military departments. One of its two main missions is foreign signals intelligence, i.e., gathering information principally by intercepting and decoding electronic communications. It also protects U.S. military and diplomatic communications by enciphering them or making them less accessible to interception by the intelligence agencies of other countries. Such work is classified. NSA's work in developing encryption techniques, however, has made it the undisputed technical leader in the United States. More recently, the agency has widened its scope to include computer security.

Some of these Government efforts to reduce vulnerabilities from unauthorized access to communications systems are also creating tensions with other defense and intelligence interests. To the extent that methods to reduce unauthorized access to these systems enter the public domain, they can be used by other countries, thereby damaging NSA's ability to gather intelligence.

Since the 1970s, DoD has become increasingly concerned about the vulnerability y of U.S. communications to foreign intelligence activities. As a result, NSA has launched several programs to better safeguard the Government electronic communications. NSA has also encouraged domestic common carriers to provide tariffed "confidential" communications services for customers and has briefed dozens of U.S. companies on the vulnerability of communications systems to interception.

Second, where "national security' has generally been used to control classified military and certain diplomatic electronic information, executive branch directives of 1984 and 1986 extend this rationale to encompass unclassified information considered to be sensitive.

A current debate concerns the appropriate agency for Federal leadership for developing security standards for civilian computer systems—NSA or the Department of Commerce's NBS. However, the core issue is more basic. It goes to the question of whether or not a defense agency should control matters that are central to civilian interests, such as commerce and the free market, constitutional rights, and principles of open science. It also involves questions about executive branch authority under the Constitution to set policy based on national security. Yet a third dimension involves society's evolving needs for information security and the appropriate Federal role in accommodating those needs.

The event that triggered the current examination of Federal policy was the National Security Decision Directive 145 (NSDD-145), dated September 17, 1984. That executive branch directive established as Federal policy the safeguarding of unclassified, but sensitive information in communications and computer systems that could otherwise be accessed by foreign intelligence services and result in "serious damage to the U.S. and its national security interests."

NSDD-145 also created an interagency management structure to implement the policy. It gave leading roles to the National Security Council, DoD, and NSA. These roles include defining what information to protect, deciding on the appropriate technology for safeguarding unclassified information, developing technical standards, and assisting civilian agencies in determining the vulnerabilities of systems to misuse.

NSDD-145 raised numerous questions from critics in other Government agencies as well as from civilian sources, some of which relate to the broader issues mentioned above. They include concern for:

- intermingling defense and civilian matters;
- public access to Government information;
- the legislated responsibility y of NBS to develop computer standards for the Federal Government under the Brooks Act of 1965, as amended;
- private sector development and use of safeguard technology; and
- expanding the responsibilities of NSA in civilian matters, particularly in light of the conflict of interest between its intelligence mission and commercial needs, and its lack of direct public accountability.

The level of public concern was elevated further with the release by the National Security Council in October 1986 of a policy statement defining what information is sensitive and therefore possibly in need of safeguarding. The release coincided with well-publicized Government activities aimed at identifying and possibly restricting access by selected foreign governments to unclassified, but sensitive data in Government and commercial automated information systems. As a result, the issue of Government restrictions on public access to unclassified information, whether or not in Government systems, has become a public concern. The statement, though rescinded in early 1987, caused public alarm that illustrated the extent of sensitivities among diverse organizations concerning controls on unclassified information.

Perhaps the major effect of these executive branch policies to date has been to encourage an examination by Congress of the effects of such defense-oriented policies on civilian matters. Legislation has been proposed to reestablish civilian control over the security of unclassified information systems. In the short term, many of the currently prominent issues related to information security policy are likely to be addressed by congressional debate over the proposed legislation, including the respective roles of NBS and NSA in setting standards and the measures to be taken, if any, to control access to unclassified information.

For the longer term, however, the vulnerabilities to misuse of information systems will depend on the development and widespread use of technical, administrative, and related safeguards. The availability of high-quality information safeguards worldwide, especially cryptographic-based systems, on the other hand, will make intelligence gathering more difficult for the United States.

National Policy on Protection of Sensitive, but Unclassified Information in Federal Government Telecommunications and Automated Information Systems, National Security Council, Oct. 29, 1986.

Ch. 2-Introduction .19

BUSINESS INTERESTS IN INFORMATION SECURITY

The question of the extent to which information systems should be protected depends on the various perceptions of threats to those systems. Simply put, U.S. defense and intelligence agencies are concerned about unauthorized access to commercial communications and computer systems by the intelligence organizations of foreign countries, particularly the Soviet Union. However, U.S. businesses or civilian agencies generally do not consider their main risk to be from such sophisticated adversaries.

The range of threats to business information systems is not as broad as that faced by defense and intelligence agencies. Business' concerns for misuses are mainly by insiders, competitors, and, to a limited extent, hackers.

Companies that safeguard their communications seem either to have business interests at risk (e.g., banking and oil exploration firms concerned about unauthorized interception) or are required by the Government to use prescribed safeguards (e.g., Federal Reserve banks and defense contractors). A number of businesses are finding additional reasons to provide some safeguards for information in computers and communications systems. These reasons include prudent management of resources and methods of improving efficiency, as well as preventing the loss of proprietary information or theft of funds. Private businesses, in addition, often are more concerned with information integrity rather than confidentiality.

For their part, businesses need safeguards that do not unduly slow down or otherwise impair normal business operations; that is, in order to be useful, security measures must be practical and efficient. U.S. firms engaged *in* international commerce and banking, to be able to use these systems, also must be able to export them to their subsidiaries in other countries.

Concern for cost is an area in which contrasts between defense and intelligence agencies and business interests are even more apparent. Private businesses must remain profitable and competitive, and, therefore, they resist safeguards unless they are cost-effective. Defense and intelligence agencies, because of their missions, are more tolerant of higher costs or of operational impediments that might result from adopting security measures. One of their most important goals is to prevent valuable information from falling into the wrong hands, even if significant trade-offs are involved.

Nevertheless, there are many similarities between the various defense and nondefense, as well as between Government and private sector, requirements for information security, although their requirements vary widely. Both need to control access to databases, restrict unauthorized activities, provide audit capabilities, safeguard sensitive data and transactions, and, generally, maintain the integrity of data and continuity of service. Thus, Federal policies that affect the longstanding NBS and NSA roles in developing technology to safeguard information systems will also affect private sector security programs.

CONCLUSIONS

The need for information security has existed for a long time. The particular attributes of security perceived to be important tend to change emphasis with time and technology, often in ways that are difficult to predict with confidence. Society's ability to satisfy its changing needs for improved security depends on its ability to adapt existing technologies and techniques as well as to innovate (see ch. 4). Government policy can bean important determinant of how, when, and by whom these needs are satisfied.

20 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

These conclusions imply that policies predicated solely on solving current security problems are not likely to endure because needs for information security are not static. Further, those based on controlling or restricting private sector actions are likely to damage other societal needs. In other words, flexibility and balance are important objectives of any policy intended to accommodate a wide range of users' needs on a continuing basis. Moreover, it seems apparent that U.S. policies that cannot effectively be enforced internationally risk being overcome by events in other countries.

Further, information security policy has a significance that is colored by different interests. One view sees its significance as relating mainly to the potential for foreign government intelligence via U.S. communications and computer databases and other threats to national security. From a different viewpoint, however, the significance of information security involves even more diverse interests. These include basic democratic principles and civil liberties, as well as commercial business interests.

In addition to these interests, each of which has its advocates, there is at least one other that has no clear advocate-the evolving needs of society for information security. Society's needs for information security has a long history that is continually evolving. Federal policy also has an influence on advances in the technology underlying information security applications, especially when the technology itself is controlled for national security purposes.

Regardless of the viewpoint taken, information technology poses a challenge to Government, industry, and society. Modern information systems and the data within them are vulnerable—they can easily be misused. The challenge is to find ways to reduce the risks to acceptable levels while preserving traditional democratic values and remaining flexible to accommodate diverse and changing needs.

The remainder of this report examines some of the technological foundations for information security and the main policy issues that are now evolving. In order to focus attention on the issues facing Congress, many topics have been treated in a limited way. The report is not about potential disruptions to or recovery from disasters, for example, nor is it about physical security or safeguarding classified information or constitutional rights. Its purpose, instead, is to describe the conflicting national interests that are shaping U.S. Information security policies, the special role of cryptography and NSA's intelligence mission, and the potential courses of action.

Chapter 3 The Vulnerabilities of Electronic Information Systems

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 24 2002

CONTENTS

Page	
Findings	
Introduction	
Vulnerabilities of Communications Systems	
Background	
Spectrum of Adversaries' Resource Requirements	
Networks	
Transmission Systems	
Other System Components	
Commercial Availability of Interception Equipment	
Vulnerabilities of Computer Systems	
Background	
Large-Scale Computers	
Microcomputers	
Software	
The Extent of Computer Misuse	
Typical Vulnerabilities of information Systems	

Boxes

Box	Page
A. Examples of Historical Concerns for Misuses of	-
Telecommunications Systems	

Figures

1 1841 00
Figure No. Page
1. Spectrum of Adversaries' Resource Requirements v. Technologies 28
Z. The Communications Network
3. Example of Antenna Directivity Pattern
4. Examples of Commercial Equipment for Interception of
Microwave Radio Signals
5. Typical Fiber Optic System
6. Mainframe Computers in Federal Agencies
7. Computer Terminals in Federal Agencies
8. Trends in Component Density, Silicon Production,
and Gallium Arsenide Announcements, 1960 to 1990
9. Microcomputers in Federal Agencies
10. Typical Vulnerabilities of Computer Systems
11. Technical Safeguards for Computer Systems

Tables

Table No.	Page
1. Bell System Circuit Miles of Carrier Systems Using Different	
Transmission Media	29
2. Telephone Company Fiber Applications	34
3. Sales of Large-Scale Host Computers in the United States	40
4. Sales of Personal Computers in the United States	42

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 26 2002

Chapter 3 The Vulnerabilities of Electronic Information Systems

FINDINGS

- Today's public communication network is, for the most part, at least as easy to exploit as at any time in the history of telecommunications. The design of the public switched network is such that some parts of it are vulnerable to relatively easy exploitation (wiretaps on copper cable, over-the-air interception), while others (e.g., fiber optic cable) present greater inherent barriers to exploitation.
- There are, and will likely remain, opportunities for casual, generally untargeted eavesdropping of communications. However, targeted and consistently successful unauthorized access requires greater resources. For systems with sophisticated safeguards, the resource requirements may frustrate even the efforts of national intelligence agencies. However, adversaries with sufficient resources can eventually defeat all barriers except, perhaps, those based on high-quality encryption.
- Users of communications systems face a spectrum of vulnerabilities ranging from those that can be exploited by unsophisticated, low-budget adversaries to those that can be exploited only by adversaries with exceptionally large resources.
- Technological advances may increase the capabilities of adversaries to misuse computer and communications systems, but these same advances can also be used to enhance security.
- Increases in computing power and decentralization of functions have increased exposure to some threats. Two types are important: abuse by intruders who are not authorized to use or access the system, and misuse by authorized users. For many organizations, the latter problem is of most concern.

INTRODUCTION

Unauthorized disclosure, alteration, or destruction of information in computer and communications systems can result from technical failure, human error, or penetration. While each of these is important to users, this chapter focuses on malicious or deliberate unauthorized access and alteration, principally because it is in these areas that the impact of Federal policies is greatest.

Widely different levels of time, money, and technical sophistication are needed to gain unauthorized access to different parts of communications and computer networks. Some forms of covert access—placing wiretaps, intercepting mobile telephone calls, hacking into poorly safeguarded computers—require few resources. Others, such as targeted and consistently successful unauthorized access, require greater resources because of the inherent barriers posed by the complex designs of these systems. For systems with sophisticated safeguards, the resource requirements may frustrate even the efforts of national intelligence agencies. 24 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

Today's communications networks make use of diverse technology. This diversity is accompanied by an uneven ease of unauthorized access to different parts of the system. Although security has not been a consideration in network design, today's systems provide some inherent barriers to easy exploitation. However, adversaries with sufficient resources can eventually defeat all barriers, except perhaps highquality encryption.1 Information in computers also has been vulnerable to malicious disclosure or alteration by various methods of penetration, including misuse by both authorized and unauthorized users. However, significant advances are being made in the technology available for safeguarding computer and communications systems, as discussed in chapter 4.

Many users of communications and computer systems remain unaware or unconvinced of significant threats due to such vulnerabilities. Most users are not now adding safeguards, despite the growing volume and value of information being stored in or transmitted across these systems.

For th₁parpases of this report, high-quality encryption techniques, for which there are no known and significant weaknesses or deciphering shortcuts, are considered to be fully secure, in spite of the fact that trial-and-error attacks will yield the unenciphered text (plaintext) with a sufficient number of trials. Computer and communications systems are becoming increasingly closely intertwined. Consequently, information security is affected by the operation of all segments of these systems. Communication networks pose one set of vulnerabilities to misuse that centers around unauthorized disclosure of information and to modification of data. When computers are linked by communications networks and are remotely accessible, the potential for misuse increases.

This chapter focuses primarily on the vulnerabilities to misuse of communications systems and methods to safeguard against them. It is intended to raise awareness and understanding of some of the technical vulnerabilities of these systems without providing a cookbook for prospective exploiters. 'Because communications and computer designs and applications vary widely, their vulnerabilities are described in general ways in the sections that follow.

^{*}Although not the subject of this report, it should be noted that simpler and often less expensive ways than electronic eavesdropping can be used to gain access to sensitive information; e., by bribing employees or by using spise. Thus, users considering adopting electronic security measures must weigh all sources of potential losses, including those from human and other errors, as well as from dishonest employees.

VULNERABILITIES OF COMMUNICATIONS SYSTEMS

Background

The developed world has become increasingly dependent on communications systems to operate businesses and governments at all levels. This can be seen in the revenue growth of communications services. The operating revenues from the domestic services of common carriers, for example, grew from \$8.4 billion in 1980 to \$166.5 billion in 1985. Similarly, revenues for domestic satellite services rose from near zero in 1975 to \$17 billion in 1985. And Intelsat's revenues from international services went from near zero to \$475 million in the past two decades. The growth in revenues reflects the fact that communications networks have become vital for many purposes, ranging from making interbank and government fund transfers to running national electric power grids and the world's airlines. There is every indication that this dependence will increase with continued advances and new applications. Both the volume of information communicated and its importance will continue to grow.

There have been occasional concerns about the vulnerability of telecommunications systems to misuse. Illustrations of some historical concerns and examples of misuse during

Ch. 3-The Vulnerabilities of Electronic Internation Systems +25

the past century are shown in box A. Although today's systems are likewise vulnerable to misuse, commercial demand for improved security (e.g., message confidentiality and integrity) has been slow to materialize. Nevertheless, message authentication and digital signature capabilities are becoming important for a number of industries (see ch. 5).

Little has been done to improve the security of public communications systems themselves. Generally, commercial systems have been designed for efficiency and reliability rather than security. Also, their inherent barriers to misuse adequately serve most users' needs for confidentiality. Where additional safeguards are deemed necessary, "add-on" measures are taken either by the user directly (adding encryption or message authentication capabilities), through the special service options offered by some communications carriers (see chs. 4 and 5), or by a combination of administrative procedures and the use of a protected private communications network.

The regulatory climate has also influenced the confidentiality of systems. The communications industry now faces an increasingly deregulated environment created, in part, by the divestiture of the American Telephone &

Box A .- Examples of Historical Concerns for Misuses of Telecommunications Systems

- In 1845, only one year after Samuel F. B. Morse's famous telegraph message "What hath God wrought," a commercial encryption, or encipherment, code was published as a means of ensuring secrecy.
- was dated within 5 years of the first demonstration of the telephone in 1881. •During the Civil War, "the first concerted ef -
- forts at codebreaking and communications system penetration, or telegraph line tapping were undertaken.
- Soon after radio communications came into use in 1895, they were used for intercepting others' messages, particularly before and dur-ing World War I. In the 1920s, the British surreptitiously eavesdropped on international cable traffic.
- .The diversion of an undertaker's business by an eavesdropping switchboard operator resulted in a patent grant for design of the first automatic switch in 1891, eventually eliminating the need for switchboard operators.

¹David Kahn, The Cadebreakers: The Story of Secret Writing (Xew York, NY: MacMillan, 1967), p. 189. "Supplex-targe Reports on Iteliligence Activities, Book V I, Fi-ral Report of the Select Committee to Study Creating: Open-tics with respect to Intelligence Activities. U.S. Sonate, Apr. 23, Apr. 25, 2000 (Section 2016) (Section 201

Units with respect to intenigence ACUCATES U. S. Senate, Apr. 25, 1976, p. 51 "Kahn, op. cit., pp. 298-299. "Janet Barisford 7 The Pszzk Palace (New York, NY: Penguin Books, 1983), pp. 23-30. "John Brooks, Telephone: The First Hundred Years/New York, NY: Harper & Row, 1976).

- During the 1920s, pervasive Government and criminal use of telephone wiretaps triggered congressional hearings and antiwiretap legislation
- .Interception of telecommunications signals played a key role in the course of World War 11. It continues to be a source of foreign intelligence gathering by major governments.⁶ In recent years, there has been concern about
- the ease of misuse of a variety of telecommunications signals, ranging from the pirating and even malicious jamming of subscription television signals transmitted over satellite communications systems to the ease of interception of cellular radio and mobile radiotelephone signals.

⁹Kahn, ep. cit.; Banford, op. cit.; Peter Wright: .Spi Catcher (New York, NY: Viking Penguin, Inc., 1967). also see Gien Zorpette (cd.), Breaking the Enemy's Code, "IEEE Spectrum, September 1977, pp. 47-51.

Breaching the Linking of Section 2014 (1997) and the Se

Telegraph Co. (AT&T) in January 1984. As a result, cost competitiveness has become an important consideration for communications carriers. It discourages them from providing costincurring safeguards for which there is no significant demand. A 1980 survey found that, with few exceptions, the Nation's 10 largest common-carrier systems were not designed for securing messages against interception. On the other hand, at least one carrier did offer an addon encryption service.3 A 1986 OTA review of six carrier systems indicates that a combination of protective services are becoming available, including encrypting radio signals or routing selected calls over cable transmission facilities

Technology plays an important but uneven role in the security of communications systerns. The rapid proliferation of ground-based or terrestrial microwave radio since the 1940s and satellite communications since the 1960s have made interception easier by making signals available over wide geographic areas. Other technical designs have also made interception easier. Private lines (dedicated channels) and cordless telephones, for example, can be intercepted because of the former's fixed position in the electromagnetic spectrum and the latter's complete dependence on radio waves.' Telephone lines can also be tapped relatively easily from wire closets on a user's premises.

Local area networks (LANs), which already have wide use in the United States and abroad for linking computer-based systems, represent another area of information technology in which security has received little attention. The same technologies that make possible continued improvements in computer and communications systems can also provide the means for sorting rapidly through a multitude of signals in search of specific telephone numbers, spoken words, or even voices.

At the same time, technology and engineering can complicate the interceptor's work. Fiber optics, which is rapidly being installed in the United States to carry telephone and other communications, * requires far more sophistication for successful interception because of the physical medium that carries the message. However, most customers will continue to have copper wires linking their offices and residences with the local telephone company's office for the long term.

AT&T's modern electronic switching network, on the other hand, encrypts signaling information (the numbers of the called and calling parties) prior to transmission, thus deny-ing potential interceptors the opportunity to target specific users' messages. Many other engineering design features, such as signal compression, spread-spectrum techniques, channel demand assignment techniques, and packet switching also complicate any interceptor's work. They do so typically as a byproduct of other objectives. And, within the next few years, as end-to-end digital networks become more commonplace, encryption services are likely to become available if demand is adequate. Of course, adversaries with significant

¹⁰ S. Department of Commerce, National Telecommunications and Information Administration, 'Identification of Events Impacting Future Cartier System Protections Against Vulzer-Millifes of Passive Interview, In 1980. To a description of the vulnerabilities of commercial telecommunications Systems, 'OTA contract report, 1986. To a description of the vulnerabilities of commercial telecommunications systems to unauthorized use, see the M ITRE Corp., Study of Fusionalities of Interventional Systems, 'OTA contract carturus(stack: Systems to Electronic Interception, vols. 1 and 2. January 1977; and the MITRE Corp., Study of Fusionalities of Interception Dependence to Electronic Electronic Electronic Interception Dependence, 'OTA contract report, November 1988. 'Telephone Taps,' OTA contract report, November 1988.' Telephone Taps, 'OTA contract report, November 1988.' Electronic Eaverdroping Techniques and Equipment, 'Law Enforcement Assistance Administration, National Institute of Law Enforcement and Criminal Justice, republished by

Ross Engineering Associates. Also, Robert L. Barnard, Intra-sion Detection Systems: Principles of Operation and Applica-tion (Stopeham, MA: Butterworth Publishers, 1981).
"Watzlie.d Diffle, "Communications Security and National Security: Business, Technology, and Politics," Proceedings of the National Communications Forum, Chicago, IL, 1986, vol. 40, Book 2, pp. 733-751.
"Bellecer: Evolving Technologies: Impact on Information Security," OTA contract report, 18, 1986, Also, see U.S. Congress, Olice of Technology Assessment, Information Tech-nology R&D: Critical Trends and Issues, Case Study 2: Fiber Opic Communications (Springfled], Va: NITS 4PB 85-245660/AS, February 1985), pp. 67-75.

resources, such as a national intelligence organization, can be expected to readily surmount most of these obstacles.⁹

A number of recent developments may also be making it more difficult to intercept, alter, or misuse signals. These include the advent of commercial encryption services and products, the emergence of new technical standards for safeguarding communicated and stored messages, recent Federal Government policies that influence the safeguarding of sensitive information, and congressional legislation concerning unauthorized access to information in some systems (see chs. 4 through 6).

Still another barrier exists to the misuse of data obtained from passively monitoring or intercepting automated information systemsthe problem of obtaining unambiguously the information of direct interest. This is readily illustrated with an example of data in the form of passively intercepted communications signals. Even if an adversary is reasonably assured that the intercepted signals contain useful data among them, the adversary must select from what may be a wealth of transmitted data in the hope of finding the target information in a timely, complete, and understandable context. Although these barriers are not likely to prove overwhelming to a determined, sophisticated adversary, they do not exist for an adversary who has the cooperation of a knowledgeable inside employee with the ability to select exactly the information of direct interest and with a full understanding of its context and limitations.

Spectrum of Adversaries' Resource Requirements

Telecommunication systems are vulnerable to unauthorized access in many ways, but the ease of such access varies widely depending

David Kahn, The Considerations: The Story of Secret Writing New York, NY: MacMillan, 1967]. James Bamford, The Prazle Präce New York, NY: Penguin Books, 1983]: "Soviets Take the High Ground, New Embassy on Mount Alto is a Prime Waching and Sistering Post." Washington post, June 16, 1985, p. B 1: and The Soviet-Cuban Connection in Central America and the Caribbean, released by the Departments of State and Defense, March 1985, Washington, DC, pp. 3-5.

r = p |I| |0| = 6 T = p |I|

on the resources available to potential adversaries. Targeted, unauthorized access to a specific user's communications over the public switched network, with a few exceptions, considerably increases the need for technical expertise, sophisticated equipment, and money. The complexity of these systems can prevent unsophisticated adversaries who lack the necessary resources from gaining access to information, but would not stop those who have adequate resources from readily surmounting the barriers.

Figure 1 illustrates the spectrum of vulnerabilities and adversaries' resource requirements. On one extreme are readily exploitable services (cordless telephones) and facilities (copper wire in local loops and wire closets) that require very limited resources for successful, targeted exploitation. Some cordless telephone conversations can be monitored using ordinary FM radios. Cellular radiotelephone conversations can be monitored using tunable ultra high frequency (UHF) television receivers. Further, wiretapping equipment can be purchased for as little as \$12. At the other end of the spectrum are applications and facilities, such as fiber optic communications and technologies. particularly those using high-quality encryption and other safeguards (see ch. 4), that make unauthorized access much more difficult.

On the other hand, technology may simplify targeted interception through such means as computer-based data matching, word recognition, and voice identification. For most users, concern about unauthorized access is more likely to focus not on potential high- or lowresource adversaries, such as wiretappers or Government intelligence agencies, but on those in between.

The situation is far from a static one. The spectrum of vulnerabilities shifts as technological advances change the nature of communications systems and the resources available to potential adversaries. Technological advances, other than those associated with information security, tend to increase the capabilities of adversaries, especially those of highand middle-level resources. Perhaps the most

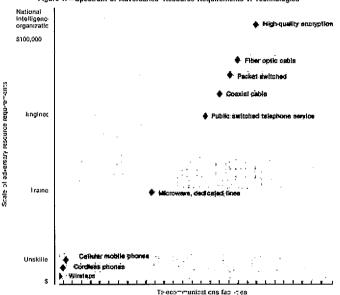


Figure 1.-Spectrum of Adversaries' Resource Requirements v. Technologies

SOURCE: Office of Technology Assessment, 1987

visible illustration of this is that of increasingly powerful personal computers, which make unauthorized access to communications and data easier.

But the question remains: Should a business that communicates valuable, sensitive, personal, or proprietary information be concerned about unauthorized access to messages transmitted over the public switched network? If history serves as a guide, we can expect few immediate changes in the confidentiality of private communications over public networks except where user demand is adequate to justify investment in safeguards. However, some corporate and Government users who face considerable risk in the event of such accesses (e.g., for communications deemed sensitive for national security purposes or for electronic fund transfers) are taking steps to improve the confidentiality and integrity of their communications (see ch. 5).

Networks

Early communications networks began as relatively simple point-to-point transmission systems. At first, telegraph and later voicemodulated electronic signals, were transmitted exclusively over copper wires, and switching was accomplished manually. Such networks were vulnerable to eavesdropping by wiretapping. Today's networks, by contrast, consist of cables (copper wire, coaxial, and fiber optic), radio links (terrestrial and satellite), and other equipment providing a complex mix of services (voice, data, graphics, text, and video) through a variety of specialized interconnected networks. Figure 2 illustrates the complexity of modern networks. In spite of the added complexity, however, vulnerabilities remain.

Communication networks have also vastly expanded the ability of users, whether from an office building or home personal computer, to gain access to computers nationwide and even worldwide. The current movement toward a worldwide digital network is aimed precisely at increasing the accessibility of network capabilities, enhancing the variety of services available, and lowering the costs of services.

Transmission Systems

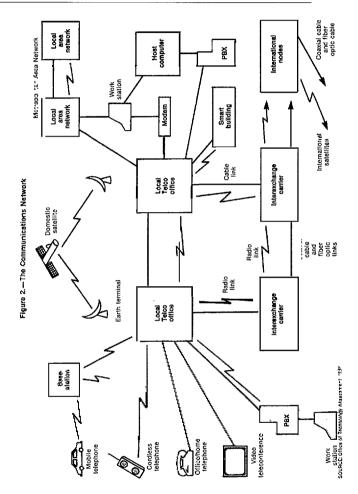
Communications systems use two types of media to transmit signals: over-the-air systems, such as radio transmissions; and conductors, such as copper wire and coaxial or fiber optic cables. In general, over-the-air systems (e.g., cordless telephones) can be intercepted and systems that use conductors can be tapped. Some conductor-based transmission systems (e.g., fiber optic cable) require sophisticated resources to tap, while others require minimal resources (taps of copper wires from wire closets). Whatever the form of transmission, it is not necessarily easy to render intercepted or monitored signals intelligible.

Microwave Radio Systems

Microwave radio systems, totaling 740 million circuit miles, carry most of the long-distance communications messages transmitted within the United States (table 1). *Systems operating at frequencies mostly between 2 and 11 GHz (gigahertz or billion cycles per second), for example, provide high-capacity circuits that carry about two-thirds of all telephone toll calls today. They often use highly directional antennas to transmit signals between stations, typically spaced from 10 to 35 miles apart.

Microwave systems are designed for a wide range of capacities, from as few as 24 voice grade circuits to as many as 2,400 circuits per radio channel. In addition, there are multiple radio channels in each of the many frequency bands that these systems operate in. For example, in the 6 GHz common carrier band, there are eight radiofrequency channels, each capable of carrying 2,400 voice grade circuits.

Interception of point-to-point microwave transmissions is relatively easy if the interceptor has technical information about the transmitter. Most such information is made available to the public by the Federal Communications Commission (FCC). Interception of signals, however, is only part of an eavesdropper's job. The signals must be demodulated and demultiplexed, which can be done using the same type of equipment as used by common carriers. But then an eavesdropper must also be able to sort through individual messages and select those of interest.


Table 1.—Bell System Circuit Miles of Carrier Systems Using Different Transmission Media

	Circuit miles at year end (In millions)			
Media	1975	1982a		
Analog:		·		
Paired wire		140		
Coaxial cable	142	221		
Radio	399	737		
Digital:				
Paired wire	. 58	138		
Coaxial cable	_	2		
Radio	. —	6 (62°/0 installed		
		in 1982)		
Fiber optic		4 (98°/0 installed		
		in 1982)		
Subscriber	. —	8 (54°/0 installed		
		in 1982)		

Trug ist shows may be appresent of 1200 m 321 months, Albhog M. How were stip economian, the growth of digular systems was almost three lines later from 1975 to 1982. Amost no new analog systems were added during introgence comparable information is not available after 1982, but a sig rillcair commitment is being made to glass fiber systems especially by ATE MCI and GTE

SOURCE Be care

¹Bellowe. Evolving Technologies: Impact on Information Security, Apr. 18, 1986.

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 34 2002 Point-to-point systems are vulnerable to interception wherever there is sufficient radiated signal strength. The geographic area in which adequate signals can be received is generally very large. It can cover dozens of square miles in the paths of the antenna's radiation and in the vicinity of either the transmitter or receiver (figure 3). Custom-built receivers may be designed with greater sensitivity than those used by the common carriers in order to broaden the area of reception.

Modern digital systems complicate interception by unsophisticated adversaries, but they simplify the work of those that are more so-phisticated. Signals are transmitted as virtually indistinguishable series of ones and zeroes, typically mixed together (multiplexed) with many other signals and encoded prior to transmission to reduce the total number of bits transmitted and thereby reduce bandwidth re quirements. Many systems also route different segments of the same transmitted signal over different paths. For adversaries with few resources, these conditions alone would represent significant obstacles, particularly for targeted interception." Other obstacles include the need to record a large volume of data and process it to extract the message content.

For adversaries with considerable resources, such as very powerful computer processing capabilities and the equivalent of the switching and transmission facilities used by common carriers, targeted interception would not represent a severe challenge. Indeed, these adversaries can sort messages to select those of interest and undo the various types of signal processing to recover the message content. To consistently intercept preselected targets in switched systems, potential adversaries must be able to carry out functions equivalent to those performed by the carriers' equipment. In addition, they need the ability to select those messages of interest and to operate covertly. This level of sophistication and investment is assumed to be beyond the means of any adversaries except those with considerable resources and motivation, principally because of the cost of such an operation.

At the other extreme, there is inexpensive commercial equipment that can be used to intercept radio signals." Figure 4 illustrates the types of equipment needed and current prices, based on catalog advertisements. The equipment includes an antenna that can be pointed, low-noise amplifier, receiver, and equipment to extract audio (and video) signals (i.e., demultiplex and demodulate them). Depending on the particular equipment selected, the total price would range from \$1,000 to \$50,000. People skilled in the design of communications equipment could undoubtedly build their own units for less, however.

Specialized Microwave Systems

The Multipoint Distribution Service (MDS), authorized by the FCC in the early 1970s, uses broadcast microwaves to distribute video and other one-way communications locally. MDS transmitters use omnidirectional antennas to broadcast signals that are received by small parabolic (directional) antennas. MDS systems are typically used as a radio version of cable television and, infrequently, to provide oneway business or educational communications.

A Digital Termination System (DTS) is another specialized microwave radio service that is similar to MDS in terms of its broadcast of microwave signals. However, unlike MDS, DTS is designed for full two-way communications between stations. The mechanics of intercepting DTS transmissions are similar to those involved with MDS or point-topoint microwave systems. Interception might be considered easier with DTS because of the clearer identification of the user's dedicated communications channel.

Dedicated Lines

Users who need to communicate extensively between two points often use dedicated or pri-

¹ The MITRE Corp., Study of Vulnerabulity of Electronic Communication Systems to Electronic Interception, vol. 1, January 1977, p. 96.

⁻⁻⁻⁻Information Security, Inc., "Vulnerabilities of Public Telecommunications Systems, " OTA contractor report, 1986.

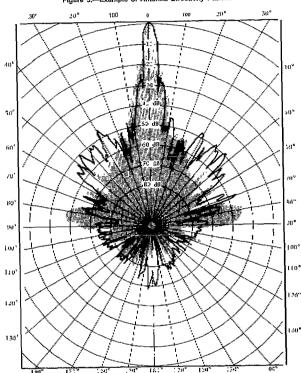
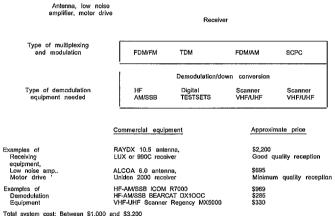



Figure 3.--Example of Antenna Directivity Pattern

SOURCE: MITHE Corp., Study of Distortability of Destroation Constructionana Systems to Electroatic Interception, VOI 1, January 1977

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 36 2002 Figure 4.— Examples of Commercial Equipment for Interception of Microwave Radio Signals

SOURCE Internation Security Inc. using catalog prices from SATCOM, and SCANNER WORLD USA magazines 1986

vate line services. These are fixed circuit paths through some combination of terrestrial or satellite microwave radio or wire transmission facilities. Dedicated lines are commonly used to link corporations' main switching centers with one another, to link interactive computer systems, and to link computer systems with remote terminals. Whereas ordinary dial-up calls might be routed along any of a number of paths depending on traffic loading conditions, dedicated circuits remain in place on the same transmission path. This simplifies the interceptor's burden considerably, since the location of the user's dedicated line need be found just once. As an example of a part of a dedicated circuit, the local loop connecting the subscriber's premise with the local telephone company's nearest office also provides a fixed path that is relatively easy to identify.

Fiber Optic Communications

Fiber optic cable is being installed rapidly by communications carriers in the United States, primarily for heavy traffic, longdistance routes, but also for many local uses. Local telephone companies installed more than 62,500 miles of fiber in 1984 and 100,000 miles in 1985 for their local loops (connecting telephone offices with subscriber's premises). Another 285,000 miles of fiber were installed by the same companies during those years for interoffice trunking (table 2).

Fiber optics is attractive, in part, because much higher data rates can be transmitted-about 1 gigabit per second currently-than using copper wire. One small cable containing two glass fibers can carry more than 15,000 two-way voice telephone conversations, or the

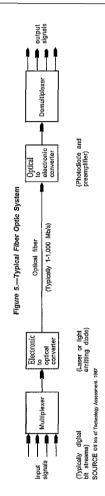
Table 2.—Telephone Company Fiber Applications (fiber miles in thousands)

	1984		1985	
Company	Long	e Loop	Long distance	Loop
NYNEX	25	15	50	25
Bell Atlantic	20	15	30	25
BellSouth		35	60	30
Ameritech	25	15	40	35
SW Bell	10	5	50	15
U.S. West	15	5	30	10
Pacific Telephone	. 20	15	40	25
Independents		10 —	10	5
Total	. 145	105	310	170

SOURCE: Annual Reports/internal Siecor Estimates,

equivalent in data signals, for up to 25 miles without requiring repeaters (amplifiers). Conventional telephone cables composed of 24 gauge copper wires, in contrast, would require 1,250 pairs of wires and repeaters spaced about 1 mile apart in order to carry the same traffic. Further advances in fiber technology are widely expected. Fiber optics also is less expensive than conventional cable, does not radiate energy under normal operating conditions, and is not as readily subject to passive or active interception as are radio signals or signals on copper wire. Figure 5 illustrates a typical fiber optic system.

Satellite Communications Systems


Satellites were first used for commercial telecommunications in the mid-1970s. Today, there are more than 100 satellites worldwide, with some two dozen providing domestic services for the United States. Still, satellites account for only a small portion of domestic ransmission capacity. In terms of domestic nonbroadcast channel capacity, they are being outpaced rapidly by fiber optic cable. International communications services have, for the past decade, been provided about equally by satellite and cable facilities. This balance is likely to shift sharply with the planned use of fiber optic cable for trans-Atlantic service beginning in 1988 and for trans-Pacific service in 1989.

Satellite communications systems operate in much the same manner as microwave relay systems, except that the repeater or amplifier is in geostationary orbit 22,300 miles above the equator. Satellites accept signals from transmitting earth stations (the uplink), translate the signal to a different frequency band, and retransmit it at suitable power levels to receiving earth stations (the downlink).

Some satellite networks are widely used for one-way distribution services, including cable and network television, and a variety of data services, such as financial information and weather reports. Two-way distribution services include point-of-sale transactions, database inquiries, and inventory control. Most of these applications use digital transmission and various techniques to share the satellite bandwidth among the users.

The satellite 'footprint," defined by the beamwidth of the spacecraft antenna, maybe contoured to the shape of the intended coverage area, but is nevertheless likely to be thousands of miles across. The satellite channel is "visible' to all points within the coverage area and, therefore, readily interceptable within that area. The signals from many satellites may be received from locations beyond the borders of the contiguous United States. The key to targeted interception, consequently, is determining which satellite and transponder channel frequencies are of interest.

One of the simplest methods for intercepting subscription satellite signals was advertised until recently in an amateur radio publication and sold for less than \$100. The device used a short piece of wire, cut to the proper

length for reception at the selected broadcasting frequency, and mounted in an ordinary metal coffee can. This apparatus was connected, through the printed circuit card provided, to the lead-in wires of a television set. All that remained was to point the coffee can at the desired satellite, adjusting by trial and error until an adequate signal was received.

These characteristics make communications satellites vulnerable to several different types of misuse. The uplinks can be overpowered by unauthorized users, whether intentionally or not, who transmit stronger signals than those used on the authorized uplink. This was the case in both of the April 1986 takeovers of the Home Box Office (HBO) channel in which a part-time satellite uplink operator and retailer of home receiving dishes overpowered the HBO uplink transmitter signal with an unauthorized one and put his own message on the screens of some 8 million viewers.⁴ In addition, the downlinks can be jammed by bogus earth transmitters.

Other vulnerable parts of communications satellites include the transponders, whose lifetimes can be severely shortened by excessive received signal strength and unprotected telemetry systems, which might be manipulated to move the satellite out of its intended orbit. "Broadcasters and communications carriers are especially concerned about jamming since the former could lose millions of dollars if advertisements are interfered with and the latter could lose many tens of millions of dollars if a satellite's lifetime is prematurely shortened. Both groups, therefore, want to shift to a less vulnerable transmission system, such as fiber optic cable, if capacity expands sufficiently. " There are also concerns about the survivability of satellite communications systems in times of national emergency.¹⁶

Mobile Radio and Cordless Telephone Systems

Land mobile telephone service typically provides two-way, voice-grade communications between abase station and mobile units or between two mobile units. The mobile unit is most commonly a car phone, although some "briefcase phones" have recently appeared on the market. The use of these systems is growing by about 20 percent annually. In addition, one-way paging services have become very popular recently.

The antennas for these units transmit omnidirectionally. Cellular mobile systems use a base station in each cell to communicate with all mobile units within that cell. A relatively small number of frequencies are needed for each cell. Inexpensive scanners can be used to monitor for mobile call signals and to tune in to the next call made. Each call transmitted from the base station is addressed to a particular mobile unit within the cell, making targeted, passive eavesdropping simple as long as the eavesdropper knows the telephone number of interest and the cell the target is in.

Cordless telephones substitute a duplex (two-way), low-power radio link for what otherwise would be a very long extension cord. Their growing popularity and the relatively small number of channels available have created problems for some users. A cordless phone always uses the same channel in the same small area; thus, these phones are much easier to tar get by eavesdroppers. Nearby users with the same frequency channel pair can listen to their neighbors' calls simply by listening with their new pooless units. In addition, some people

¹¹For a detailed review, see Donald Goldberg, "Captain Midnight, HBO, and World War 3," *Mother Jones*, October 1986, p. 26

p. 26. "The range of vulnezelulizes of commercial communications satellites were discussed in some detail by representatives from HBO. CBS Technology Center, and MA-COM, Inc., at a seminar at the Massachusetts Institute of Technology on Oct. 16, 1986. Also discussed were a number of safegurads that are being considered for current and, especially, future satellites. "Bid.

Instantiation of the second second

tes that: ...comperial satellite communications systems are vulnerable to hostile actions which would deny service in emergency stuations, particularly actions by a relatively unsophisticated anagonist--the so called 'cheap shot' attack. For example, today's satellite command links provide only modest protection against electronic intrustom. Also, in nucléar war, some of the Control facilities of satellite softement unsoftement endest control facilities of satellite softement emasher.

have intentionally used their remote units to initiate calls by triggering other parties' base units, thus avoiding having to pay for the call since the related bill (usually for along-distance call) is sent to the base unit owner. This "theft of dial tone" is possible when the base unit does not have appropriate security features."

Mobile and cordless radio have much in common, but two main differences involve signal range and the ease with which an adversary may target on particular users. Although cordless phones are easy to target, their range is typically no more than 1,000 feet, while conventional mobile radio signals may be received at a distance of 20 to 30 miles. Newer cellular mobile phones have a smaller range and use a variety of channels and base stations as they move from cell to cell, making them slightly harder to pinpoint.

Other System Components

Switching Systems

In addition to the transmission paths that connect end users and network nodes, and the network nodes to each other, switching systems located at the network nodes provide opportunities for misuse. Thousands of communications lines are concentrated at these nodes, with the use of telephone company records, individual circuits assigned to particular customers can be identified. In order to reduce opportunities for potential misuse of these records, the operating companies must carefully limit both physical and remote access to these nodes. The necessary precautions are the same as those described below in connection with the security of computer systems.

Most electromechanical switching systems require frequent maintenance, particularly those that serve large numbers of customers. On the other hand, stored, program-controlled switching systems of comparable size require less frequent onsite maintenance since many of their functions can be controlled electronically from remote, centrally located maintenance sites. From these sites, however, access can be gained to an even greater number of communications channels. This is an important reason for controlling both physical and remote access to these nodes. A special concern is electronic access to the processor used to control these switching systems: A knowledgeable individual, for example, could sabotage or manipulate the switching system (e.g., by rerouting calls destined for one person to another) without physical access to the switching systems.

Switching systems are equipped with circuitry designed to permit operators to verify that busy lines are actually in use and, in an emergency, to interrupt ongoing conversations. By the very nature of the circuitry's design, it would permit monitoring of conversations if protections were not incorporated. In fact, current versions of this circuitry have scramblers built in and, if interruption is required, periodic audible tone bursts are used to alert the users that a third party has joined their conversation.

Signaling Elements

Signaling is another element of communications systems that may provide opportunities for abuse. Signaling is normally used to send the destination address data between switching network nodes. There are signaling methods that use either slowly pulsed direct current or voice band tones that are in predominant use between customers' premises and the local telephone office." These are used for voice and a substantial number of data communications. Both of these signaling methods can be monitored, using methods described above for monitoring communications, allowing an eavesdropper to intercept not only message content but also its destination.

Carriers use pen registers and modern dialed number recorders to monitor destination address signals. A new type of digitally coded

"Some data communications only use these signaling methods to direct a call through the telephone network to a packet switched network and thus information about the destination address is of limited value to an adversary.

[&]quot;See Federal Communications Commission, "Further Notice of Proposed Rulemaking ' Docket #3-325, released May 23, 1984.

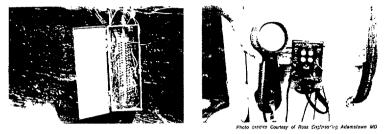
address signaling is now used in connection with some data communications networks, such as packet networks. This type of signaling is also used for internode signaling in AT&T's common channel interoffice signaling system (CCIS) and some other networks. Separation of signaling information from message content increases the confidentiality of messages provided the eavesdropper does not have access to the signaling data. The CCIS encrypts the signaling information sent between nodes.

Operational Support Systems

In addition to the transmission, switching, and signaling components, communications systems include supporting equipment for testing, repairing, and maintaining customer records. The information stored in these systems could be valuable to a person seeking to intercept communications. Access to this information can be limited by time of day, terminal location or function, physical access, logon identification passwords, authorization verification, and audit trail records.

A testing system is another type of operational support system. Testing systems can gain access to specific trunk and line circuits, and thus provide an opportunity to either monitor communications or obtain information regarding communication links. These systems are often protected by many of the same techniques described above.

Commercial Availability of Interception Equipment


The very technologies that make possible continued improvements in communications and computer processing also lend themselves to illicit purposes. The successful disruption of the HBO satellite broadcast in April 1986 shows that some of these systems are no better protected against such attacks than against passive interception. This may be changing as a result of the HBO experience. The satellite transponder cannot distinguish between the legitimate signal and a bogus one—it simply selects the stronger signal.¹⁹In the HBO case noted earlier, the "adversary' or hacker was sophisticated technically and had access to commercially available and relatively inexpensive transmitter equipment, as well as information in the public domain concerning the satellite's location and transponder frequency.

In a completely different part of the network, wiretapping of telephone lines remains one of the simplest forms of eavesdropping, as long as physical access to wire closets and other interconnection points are generally accessible.20 Certain types of wiretaps cannot be detected by electronic means, and some wiretaps can be performed using equipment costing as little as $12.^{21}$ A wiretap is sufficiently easy to install that even a 9-year-old can do it." Rooftop terminal junction boxes and residential junction boxes are often readily accessible to potential wiretappers. In contrast, when fiber optic cable is used to connect the user's premises to the carrier's facility (the local loop), tapping the fiber cable requires more sophisticated and expensive equipment and skill.

^{(&}quot;Mystery Braadcast Overpowers HBO," Institute for Electrical and Electronics Engineers, THEINSTITUTE, vol. 10, No. 10, October 1986, p. 1. "In one of the relatively few examples in which telephone tags are uncovered, a tap and electronic bugging equipment were recently reported discovered in the office of the governor of New Metco, "Capitol Bug Found, "Washington Post, Jan. 10, 1987, p. A8. "Bross Fraining Association Tablement Tablement

[&]quot;Ross Engineering Associates, "Telephone Taps, " OTA con-tractor report, November 1986. "Ibid

Ch. 3- The Vulnerabilities of Electronic Information Systems +39

Rooftop Terminal Junction Box

VULNERABILITIES OF COMPUTER SYSTEMS"

Background

In a simplified form, computer security is the ability of ensuring that people use information systems only as they are supposed to. This involves protecting:

- Ž the system itself against failures, whether caused by deliberate misuse, human error, or technical problems; and
- Ž the information in the system to ensure that it is seen and used only by those who are authorized to do so and that it is not accidentally or maliciously disclosed or modified.

Computer "hackers" aside, it is even more important to recognize that information security is much broader than just protection against those who would penetrate information systems from the outside. People within organizations are perhaps even more likely to misuse information systems, including unauthorized actions by those who are authorized to use the system. In addition, technical failures can be caused by natural disasters.

The rapid evolution of computer technology, and society's growing dependence on it, have important implications for information security. Three distinct kinds of technical trends can be identified that have security implications—the growth of large-scale computers, the evolution of microcomputers, and changes in computer software.

Large-Scale Computers

Advances in large-scale computing have dramatically lowered the cost of computation. " The power of machines relative to their cost and size has been increasing during the last 30 years by more than a factor of 10 per decade and is likely to continue increasing for the foreseeable future. These changes have been complemented by magnetic (and more recently

¹Because this report emphasizes telecommunications security, the treatment of computer security is brief. For more information on computer security, see U.S. Congress, Office of Technology Assessment, Federal Governmee' Information Technology. Messagement, Security, and Governmeet Oversight, OTA-CI 1-297 (Washington, DC:U, S. (Sourcement Printing Office, February 1986).

 $^{$^{-24}\}mbox{m}$ https://www.sec.a.without.com/sec.a.secc.a.sec.a.sec.a.sec.a.sec.a.sec.a.sec.a.sec.a.sec.$

40 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

optical) disks that can hold greater and greater amounts of information on each disk. Communication between computers has also become considerably more pervasive and efficientline speeds are higher, protocols and technical standards have been established, and communications systems are generally evolving from analog links to digital technology.

These increasingly powerful machines have also become much more pervasive in society. Figure 6 shows that the number of mainframe computers operated by the Federal Government has increased from about 11,000 in 1980 to 27,000 in 1985, with most of the increase coming in the Department of Defense. Perhaps more important, figure 7 shows that the points of access to Federal computers have increased geometrically in recent years, from roughly 36,000 terminals in 1980 to 173,000 terminals in 1985. Table 3 indicates similar trends in sales of large-scale host computers in the United States from 36 units in 1965 to more than 1,600 in 1985.

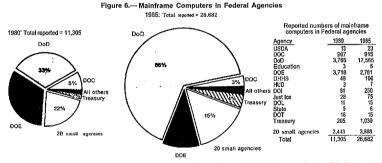
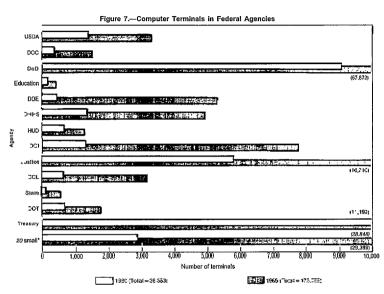

These trends-increased power and use of large-scale computers-have strong implications for security. First of all, the changes have resulted in increased dependence on informa-

Table 3.—Sales	of L	arge-Sc	ale	Host	Computers
in	the	United	Sta	tes	

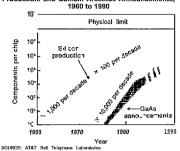

Year	Units Value
1976	
1977	611 \$ 2.4 billion
1978	
1979	
1980	1,328 \$ 4.8 billion
1982	
1985	
	is are those machines serving more than 128

nt This delightion is not neces users in a normal commercial ervi ronme sarily the same as that used in figure 6 SOURCE International Data Corro

tion technology generally. That means that virtually all Government agencies and private organizations are more susceptible to technical sabotage or failure of their computers. But it also means that there is more information stored in computers, that this information is often accessible to more people, and that this information is accessible at a distance via telecommunications linkages.

NOTE: Consistency in definitions of "mainframe" central processing units cannot be assured because of different Interpretations of the term Cellsrians may not agree with definition of large host computers in table 3 SOURCE" OTA Federal Agency Data Request

"20 selected independent agendies that reveived CTA's data request SOURCE CTA Faderal Agency Data Request.


On the other hand, the increased power and sophistication of large-scale computers also means that more sophisticated safeguards are more practical than they were with smaller computers. These safeguards include "audit programs that log the actions of each user and more powerful access controls. These and other safeguards are discussed in chapter 4.

Microcomputers

Changes in smaller desk-top or personal computers have been even more striking and rapid than those in large-scale machines. Since the first microcomputer was commercially produced in the mid- 1970s, these devices have pro gressed to a point where their speed and power nearly equal that of mainframe computers a decade ago. These improvements are largely due to the increasing number of circuits that manufacturers can put on a single microprocessor chip. Figure 8 shows the geometric increases in the complexity of these chips, which has led to a declining cost per unit of computing power.

Microcomputers have also changed from an obscure hobbyist item to a standard and necessary piece of equipment in many homes, businesses, and Government offices. Figure 9 shows that the number of microcomputers in the Federal Government rose from only a few thousand in 1980 to about 100,000 in 1985. Ta-

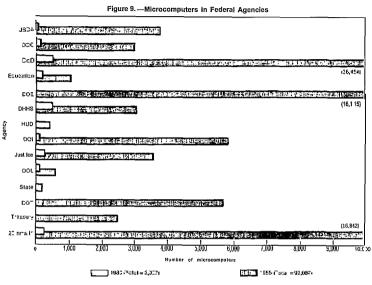
Figure 8.—Trends in Component Density, Silicon Production. and Gallium Arsenide Announcements,

ble 4 shows comparable trends in the Nation as a whole, with sales of personal computers rising from 380,000 in 1980 to almost 6 million in 1985.

Microcomputers are computers in their own right and thus require appropriate administrative and technical security measures to safe guard the information they process. Also, microcomputers can be networked and/or function as "smart" terminals to larger computer systems. Thus, the rapid proliferation of microcomputers cannot only place computing power in the hands of an increasing number of computer-literate individuals, but also can decentralize data processing capabilities. For example, employees of many firms or Government agencies are able to collect and manipulate information on their own desk-top microcomputers. Additionally, they are to able use these microcomputers to copy or "download" large amounts of information from the organization's central computer and also to "upload" information they have collected or manipulated into the central computer files.

The expanding use of microcomputers can have an adverse effect on security if the appropriate security policies, procedures, and practices are not in effect. For instance, in a computer system that is not organized so as to control and monitor users' access to data files

Table 4.—Sales of Personal Computers in the United States


Year Uni	its (thousands)	Value (billions of dollars)
1980	379	1.1
1981	644	1.9
1982	2,884	4.2
1983	5,872	8.7
1984	6,586	13.0
1985	5,689	13.3
1986 (estimated)	6,633	14.6
1987 (estimated)	7,414	15,9
1988 (estimated)	8,262	17,7
1989 (estimated)	9,317	19.8
1990 (estimated)	10,120	21.6

and constrain the data transactions that authorized users are permitted to perform, users can copy or manipulate data in an essentially uncontrolled fashion. There is a growing array of add-on microcomputer security products that address security problems of this sort, as well as an increasing awareness of the importance of using these safeguards. Also, the capability (at the mainframe computer) to control the downloading/uploading of data files is well within current technology. However, actual practice often falls short of the ideal, particularly in firms that do not recognize the value of electronic information in microcomputers and the importance of safeguarding it.

Using microcomputers instead of "dumb" terminals, on the other hand, can help if good security practices control the downloading and uploading of data files and if the system is configured properly. For example, data integrity can be improved by procedures requiring authorized users to make additions, corrections, or other modifications to large data files on a microcomputer. If the modified data are checked, and only then uploaded to the main computer files, then the probability of accidental or malicious deletions of main files, for instance. can be reduced.

Software

Technical sophistication in software and in databases has progressed more slowly than hardware advances. In fact, many people now

"20 Independent agencies selected by OTA to receive the data request

NOTE The date stocks used GSA stocknown of influence of a physical physical date of an expension of second and independent use — including particular and expension and a physical and a physical date of the second and physical date of the second and the secon

SOURCE OTA Redete ingenov Date Request

recognize that software is the bottleneck for many prospective applications of information technology. Nevertheless, the past two decades have seen significant increases in the size of databases that can be reasonably accommodated by software and in the sophistication of the software itself. This means, for example, that software can link disparate pieces of information in a database more readily and that users can make inquiries of databases using more natural commands.

These changes give more people direct access to computerized data and the databases contain far more information that is subject to both authorized and unauthorized use. Further, although not a subject of significant concern to many users, some security experts consider that the inferential ability to link pieces of information in a database or from different databases can have subtle but important implications for security. To date, most attention to this type of problem has been on the part of the defense and intelligence communities, but the problem can be more general. Even when the most sensitive information is unavailable, an adversary can infer critical data by combining pieces of apparently innocuous in44 • Defending Secrets, Sharing Data: New Locks and Keys for Electronic information

formation (e.g., determining information about the design of a company's product from its orders for raw materials).

The Extent of Computer Misuse

A variety of recent studies have indicated substantial increases in computer misuse. However, information available about the extent of computer misuse is spotty. Moreover, these studies suffer from serious shortcomings that make generalizations difficult (large successful frauds are often not reported, let alone prosecuted).

The most significant studies and findings include:

- The American Bar Association's 1984 "Report on Computer Crime." In a survey of 283 public and private sector organizations, ABA found that 25 percent of the respondents reported "known and verifiable losses due to computer crime during the last 12 months."
- The American Institute of Certified Public Accountants 1984 "Report on the Study of EDP-Related Fraud in the Banking and Insurance Industries." AICPA surveyed 5,127 banks and 1,232 insurance companies. Two percent of the banks and 3 percent of the insurance companies said they had experienced at least one case of fraud related to electronic data processing. Sixteen percent of the frauds were reported to involve more than \$10,000, although that figure does not reflect funds that were recovered.
- The President's Council on Integrity and Efficiency issued "Computer-Related Fraud in Government Agencies: Perpetrator Interviews," in May 1985. The Coun-

cil surveyed Federal agencies and found a total of 172 relevant cases of computer fraud or abuse. The losses in fraud cases ranged from zero to \$177,383, with the highest proportion in the \$10,000 to \$100,000 range.

- The Department of Justice's Bureau of Justice Statistics 1986 report "Electronic Fund Transfer System Fraud." This reported a study of fraud related to the transfer of electronic funds in key banks. The study estimated that banks nationwide lost \$70 million to \$100 million annually from automatic teller fraud. It also examined losses from wire transfers, although there were insufficient data to estimate national loss levels. Twelve banks reported 139 wire transfer fraud incidents within the preceding 5 years, with an average net loss (after recovery efforts) per incident of \$18,861. However, the loss exposure or the potential loss per wire transfer incident averaged nearly \$1 million.
- Security magazine and the Information Systems Security Association surveyed their subscribers and members in 1985 and 1986. Eighteen percent of the 1986 respondents reported that their company had detected a computer crime in the last 5 years, compared with 13 percent reported by the 1985 respondents. The respondents rated the threats to computers, in descending order: unauthorized use by employees, routine errors and omissions, carelessness with printouts, theft of computers, fire damage, use/misuse by outsiders, and vandalism.

While these studies are far from conclusive, it is apparent that deliberate misuse of computers is a significant and growing problem.

TYPICAL VULNERABILITIES OF INFORMATION SYSTEMS

The combined advances in communications and computer technologies have resulted in information systems that are an order of magnitude more complex than those of 10 or 20 years ago. Not only is computing power greatly increased, but it is also more decentralized and communication between computers and interconnected devices has become far more pervasive. In some ways, this has improved security in that, for example, information is no longer stored in just one large computer, which could result in chaos if it tailed. On the other hand, information systems are much more extensively linked and interdependent, and the number of points from which technical failure, deliberate misuse, or accidental errors could cause serious problems has increased geometrically.

To illustrate the numerous vulnerabilities of computer systems, figure 10 presents a schematic diagram of a typical information system. The circled letters in the figure correspond to certain types of vulnerabilities (discussed below) that encompass the vast majority of potential problems caused by deliberate misuse of computer systems. Some problems are more important in some systems than in others and potential adversaries may be more or less sophisticated. As will be seen in chapter 4, good security practices would require security officials to perform an analysis of each system to determine which vulnerabilities and threats are most significant and what protective measures would be most appropriate and cost-effective.

The first two kinds of vulnerabilities do not require direct on-line access to data and, generally, an adversary needs relatively few resources to exploit them. The first (a) is theft of storage media that contains valuable data. Theft (or copying) of personal computer diskettes, for example, can be particularly easy because personal computer users often do not lock up their diskettes. Similarly, theft of printouts (b), especially discarded ones, is typically quite easy and has been the source of a significant amount of computer abuse. The printouts may contain valuable competitive information or account and password information that allows an unauthorized person to later gain electronic access to the system.

The next type of vulnerability is misuse of computer systems by those who are authorized to use them (c). The misuse can consist, for example, of stealing corporate secrets, changing personnel information, causing falsified checks to be written, or damaging databases. This type of misuse typically requires only a moderate level of sophistication on the part of the perpetrator, although in some cases (e.g., falsified disbursements) it requires collusion between two or more workers.

Moving up one step further in level of adversary, outsiders who gain unauthorized access to a computer system can perpetrate the same kinds of misuse. This usually requires covertly obtaining an account name and password by, for example, looking over the shoulder of an authorized user, finding a discarded computer printout, using codes written on cards or pieces of paper taped to the terminal, or simply guessing. Such an outsider could either seek to gain access to an authorized user's local terminal or personal computer (c)or could try to access the system from a remote location via phone lines (d). Access via phone lines is inherently less risky for the perpetrator since it is often less protected by security measures than local access. The dangers of hobbyists prowling in computers via phone lines are often overstated compared with misuse by those authorized to use computer systems. However, it is likely that long-distance computer abuse will continue to grow and more serious adversaries (e.g., technically adept criminals, including organized crime) will be involved

Computer system operators (e), such as programmers and managers, sometimes have access to user passwords. Although this is becoming less common, they still generally have access to stored files unavailable to other users. In particular, programmers have the technical expertise to perpetrate sophisticated sabotage and misuse, including such exotic attacks as "logic bombs" that render a system unusable after a specified period of time or at a specific time (often after the disgruntled programmer is no longer employed at the site).

The last two vulnerabilities, eavesdropping on computer transmissions through either tele communications links (i) or local connections (g), are discussed in previous sections of this chapter. Chapter 4 describes some of the safe guards that have been developed to address these vulnerabilities and prevent such crimes in the future. Figure 11 shows how these safe guards can be used in computer networks. 46 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

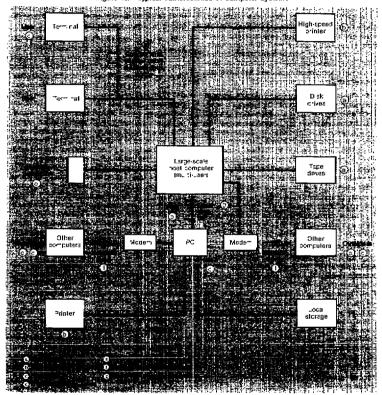
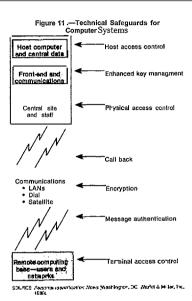



Figure 10.-Typical Vulnerabilities of Computer Systems

SOURCE: CP to of Technology Assessment, 186

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 52 2002 Chapter 4 Security Safeguards and Practices

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 54 2002

CONTENTS

Page

Findings
Introduction
Encryption
Encryption Algorithms
Message Authentication
Public-Key Ciphers 61
Digital Signatures
New Technologies for Private and
Secure Transactions 68
Key Management 69
Voice and Data Communications
Encryption Devices
Personal Identification and User
Verification
Background
Conventional Access Controls 73
Biometric and Behavioral
Identification Systems
Access Control Software and Audit
Trails
Host Access Control Software 83
Audit Trails
Administrative and Procedural
Measures
Computer Architectures
Communications Linkage Safeguards 89
Port-Protection Devices
Satellite Safeguards
FiberOptic Communications 90
Common Carrier Protected Services., 90
Boxes

Box	Page
B. An Example of DES Encryption	. 57
C. Application of Message	
Authentication to Electronic Funds	
Transfer	. 60
D. Host Access Control Software	. 84

Figures

Figure No. Page
12. Common Administrative, Physical,
and Technical Information Security
Measures
13, DES Encryption in Electronic
Codebook Mode
Federal Standard for
Authentication 62
15. Public-Key Ciphers 64
16. Digital Signatures Using a Public-
Key Cipher
17. A Description of the Past Network
Environment
18. A Description of the Current/Future
Network Development
19. The Mechanics of See-Through
Security
20. Biometric Identification
Configuration Alternatives: Host-
Based v. Stand-Alone
21. Example Reports From Audit Trail
Software

Tables

Table No.

Major Characteristics of Automated Biometric Identification Types 79
 Configurations and Applications of

Page

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 56 2002

Chapter 4 Security Safeguards and Practices

FINDINGS

- Technical safeguards for computer and communications systems are still evolving, as are users' understanding of their needs for them. Products and systems are available for controlling access and auditing use and for encrypting data.
- Technical safeguards alone cannot protect information systems completely. Effective information security requires an integrated set of safeguard technologies, management policies, and administrative procedures.
- Information security hinges on the security of each segment of the increasingly intertwined computer and communications network.
- A number of important techniques are emerging to verify the identities of the senders of messages, authenticate their accuracy, and ensure confidentiality. Mathematical techniques using cryptography cannot only provide improved information security, but also broaden the applicability of electronic transactions in commerce.
- The Federal Government has played an important role in promoting technical standards for selected information safeguards, particularly for cryptography. Yet, the public position of the Government in general and the National Security Agency, in particular, has been inconsistent. This inconsistency is especially apparent in providing Federal leadership for the development of information security standards; e.g., in NSA's reversal of endorsements of an open encryption algorithm and of dependence on consensus agreement in developing encryption-based security standards.
- Questions are being raised about the efficacy of the NSA's developing unified sets of standards and guidelines for government-wide and private nondefense use.

INTRODUCTION

Technology that can help promote information security can be divided into administrative, physical, and technical measures. Figure 12, which shows examples of each of these categories, demonstrates the diversity of safeguard applications and the range of approaches to improved safeguards.¹ Like the range of threats and vulnerabilities that afflict different information systems, there is a wide range of safeguards that can help protect them. Although administrative and procedural measures are also fundamentally important to good overall security, this chapter concentrates primarily on technical safeguards. These include the following:

 Encryption, which can be used to encode data prior to transmission or while stored in computers, to provide an electronic

This section examines safeguards for both computers and communications since many of the measures discussed apply to both.

Figure 12.—Common Administrative, Physical, and Technical Information Security Measures

Administrative security measures:

Administrative security measures: - Background checks for key computer employees. - Requiring authority of two employees for disbursements. - Requiring that employees change passwords every few months, do not use the names of relatives or friends, and do not post their passwords in their offices. - Removing the passwords of terminated employees quickly. - Providing security training and awareness programs. Zestabilishing backup and contingency plans for disasters, loss of telecommunications support, etc. - Storing copies of critical data off-site. - Designating security policy, including criteria for sensi-tivity of data.

• Providing visible upper management support for security.

- Physical ecurity measures:
 Locking up diskettes and/or the room in which microcom-puters are located.
 Key locks for microcomputers, especially those with hard disk drives.
- Requiring special badges for entry to computer room.
 Protecting computer rooms from fire, water leakage, power
- outages. Not locating major computer systems near airports, load-

- Not rotating docks flood or earthquake control.
 Technical security measures:
 Audit programs that og activity on computer systems,
 Access control systems that allow different layers of access for different sensitivities of data.
 Encrypting data when it is stored or transmitted, or using an encryption code to authenticate electronic transactions.
 Techniques for user identification, ranging from simple ones such as magnetic stipe cards to more eacher biometric techniques, which rely on hand or eye scanners ones such as magnetic stripe cards to more esoterio bi-ometric techniques, which rely on hand or eye scanners (just beginning to be used).
 'Kernel'-based operating systems, which have a central core of software that is tamperproof and controls access within the system.
 'Tempest' shielding that prevents eavesdroppers from picking up and family and the system servers and the system.
- "Tempest" shielding that prevents eavesdroppers from picking up and deciphering the signals given off by elec-
- tronic equipment • Generally used only in military or other national security applications in the United States.
- SOURCE' US Congress, Office of Technology Assessment, federal Government reformation Technology Management, Security, and Congressional Oversight, OTA. C 7-297 (Washington, DC'U.S. Governmant) Printing Office, February 1966), p 61

"signature," and to verify that a message has not been tampered with.

Personal identification and user verification techniques, which can help ensure that the person using a communications or computer system is the one authorized to do so and, in conjunction with access control systems and other security procedures, that authorized users can be held accountable for their actions.

- · Access control software and audit trails, which protect information systems from unauthorized access and keep track of each user's activities.
- Computer architectures that have been specifically designed to enhance security.
- Communications linkage safeguards, which hamper unauthorized access to computers through phone lines.

The systems of safeguards that are being developed fall into categories that control access to data or monitor user activities and others that protect the integrity of data, e.g., verify its accuracy. Technology is paving the way for further improvements in these and still other categories. Systems that will combine improving message integrity with preventing unauthorized activity are beginning to set the stage for major new applications with broad commercial applications.

Security is never just a "black box" of technical safeguards that can be purchased and added to computer or communications systems. Moreover, technical measures would be fruitless unless accompanied by suitable policies and administrative procedures. For security measures to be effective, they must be planned for and managed throughout the design and operation of computer and communications systems. This chapter, however, mainly discusses the technology of safeguarding information systems.

In addition, for many types of users, the combination of reasonable effectiveness and convenience are more important than extremely high security. Determining which safeguards are appropriate for a particular computer or communications system requires an analysis of such factors as the value of the information at risk, the value of the system's reliability, and the cost of particular safeguards. Security experts disagree about how this "risk analysis" ought to be conducted and about the problems with, and validity of, risk analyses. But, some form of risk analysis-whether formal or informal, quantitative or qualitative-remains the chief means by which managers can assess their needs and evaluate the costs and benefits of various security measures.

The National Bureau of Standards (NBS) has played an important role in developing computer security standards. This role has become complicated by the recent entry of the NSA into the standards arena and by NSA efforts to develop comprehensive standards suitable for all users' needs.

There are four driving forces behind the emergence of the new safeguard technologies:

- developments in microelectronics and information processing, such as smart cards and other hardware implementing encryption algorithms;
- z. developments in cryptography, such as asymmetric and public-key ciphers;
- developments in the mathematics underlying signal processing and cryptography; and
- developments in software, particularly for processing biometric personal identification data.

A number of technologies exist that can verify that individual users are who they claim to be. Similarly, technologies exist to authenticate the integrity of a message and to ensure its confidentiality. These developments are being applied mainly to solve some of today's problems concerning information security.

Technologies for user verification, often intended for use in conjunction with other access control systems, include: hand-held pass-word generators, "smart" key cards with embedded microprocessors, and a number of personal identification systems based either on biometric measurements or other individual characteristics. Message authentication techniques rely on combinations of encrypting and/or "hashing" schemes to create a code authenticating the accuracy of a message's content. A variation of this technique can provide a "digital signature" that not only authenticates the message, but also establishes the identity of its sender. Encryption methods are widely available to protect against unauthorized disclosure of messages.

What is becoming increasingly apparent, however, is that some of this same technology

Ch. 4-Security Safeguards and Practices • 53

has far greater potential uses. One of the central observations of this chapter is that measures, particularly technical measures, are beginning to be developed that provide some of the tools likely to prove important in the long term for more secure operation of electronic information systems in uncontrolled, even hostile environments. These include environments, such as the public switched telephone network for example, where sensitive data is unavoidably exposed to risks of being improperly accessed, modified, or substituted, or where errors can be introduced by the system itself, as from normal electronic noise in communications systems. Information security technology shows promise for greatly expand-ing the range of applications of computer and communications systems for commerce and society. It will accomplish this by reducing the cost of many of today's paper-based business transactions, by providing legally binding con-tracts executed electronically, and by protecting intellectual property and the privacy of personal data stored in electronic form. (See ch. 5.)

To achieve most of the above, cryptography is critically important. There are no close substitutes for cryptography available today. Cryptography, however, is a technology in which the Government has acted somewhat inconsistently by controlling private sector activity in some ways, while occasionally stimulating it in others. Thus, the technology that is important to future applications of information security is coupled to Federal policies that can encourage or inhibit its advancement. Options for the future role of Federal policies in influencing technological developments are discussed in chapter 7.

There are two principal uncertainties in the future development of safeguards. The first is the extent to which users of computer and communications systems will, in fact, buy and use the safeguards that are available. Some of the key factors that will influence users' actions include their evolving awareness of threats and vulnerabilities, the practices of their insurance companies, the evolution of "standards of due care' related to security practices, the Federal 54 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

role as a leader and shaper of the field, and news media attention to incidents of misuse. Information and communication system risk analyses, based on historical threat and vulnerability profiles, will influence the marketplace for safeguards. If the demand for safeguards increases, then the market will no doubt respond with more products and techniques. On the other hand, if many users' interest in security levels off, there may be a shakeout in the market for safeguard devices, perhaps leaving mainly those products developed for Government agencies.

The second major uncertainty is the extent to which vendors of these safeguards, in collaboration with users, will be able to develop systems that use multiple safeguards in a simple, integrated fashion. If demand for safeguards becomes a significant fraction of the overall computer and communications system market, the resulting products are more likely to be well integrated, easy to use, and low cost. For someone who needs to gain access to his or her company's mainframe computer from home, for example, appropriate safeguards might include the functions of a hand-held personal identification device, encryption of the telecommunications link, passwords, dial-back modems, and audit logs at both the microcomputer and the host computer. Using such a combination would be tremendously cumbersome at present, requiring multiple pieces of hardware, software, and passwords. Thus, a major challenge for the industry is to develop systems that allow the various safeguards to work together and to become virtually invisible to the user, as well as cost-effective.

ENCRYPTION

Encryption is the most important technique for improving communications security. It is also one of several key tools for improving computer security. Good-quality encryption is the only relatively sure way to prevent many kinds of deliberate missues in increasingly complex communications and computer systems with many access points. Of course, encryption is not a panacea for information security problems. It must be used in concert with other technical and administrative measures, as described below. In particular, effective key management is crucial.

Encryption Algorithms

The various techniques for encrypting messages, based on mathematical algorithms, vary widely in their degree of security. The choice of algorithms and the method of their development have, in fact, been among the most controversial issues in communications and computer security. (See ch. 6.) The various algorithms currently available differ along the following dimensions:

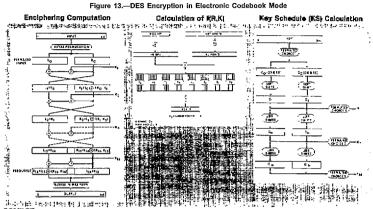
- The mathematical sophistication and computational complexity of the algorithm itself.—More complex algorithms may be (though not necessarily) harder for an adversary to decrypt or break.
- Whether the algorithm is for a symmetric cipher or an asymmetric one. —Symmetric ciphers use the same key for encryption and decryption, while asymmetric ciphers use different but related keys.
- The length of the key used to encrypt and decrypt the message.—Each algorithm uses a series of numbers known as a key that can change with each message, with each user, or according to a fixed schedule. Generally, for an algorithm of a given complexity, longer keys are more secure. One of the important factors in selecting keys is to make sure that they cannot be easily guessed (e.g., using a phone number) and that they are as random as possible (so that an adversary cannot determine a pattern linking all the keys if one is discovered).
- Whether the algorithm is implemented in soft ware (programming) or hardware (built

into an integrated circuit chip).-Hardware tends to be much faster than software, although less versatile and portable from one machine to another.

. Whether the algorithm is open to public scrutiny. -Some nongovernment experts argue that users have more confidence in an algorithm if it is publicly known and subject to testing. NSA and others, on the other hand, assert that the algorithm is one of three essential pieces of information an adversary must have to decrypt a message (along with the key and access to the message itself) and that secret algorithms are thus more secure.2 A related argument is that if an algorithm is publicly known, standardized, and widely used, it becomes a more attractive target for cracking than algorithms that are seldom used. The Data Encryption Standard (DES, see below) is one of the few working algorithms that is open to public scrutiny. Most of the other privately developed and all of the NSA-developed algorithms currently in use have been kept secret.

DES is probably the most widely known modern encryption algorithm. (See app. C for background on its development). Based on an algorithm developmed by IBM, DES was issued as a Federal standard in 1977. Although publicly known and subject to scrutiny for more than 10 years, most experts are confident that it is secure from virtually any adversary except a foreign government. The level of security is gradually weakening, however, because of the decreasing cost of computer power and the possibility of using many computing devices in parallel to crack the algorithm.

DES has four approved modes of operation, specified in FIPS Publication 81 ("DES Modes of Operation," Dec. 2, 1980). The modes vary in their characteristics and properties. The four modes are the electronic codebook (ECB), cipher block chaining (CBC), cipher feedback (CFB), and the output feedback (OFB) modes. (See app. C.) The CBC and CFB modes can be used for message authentication. The ECB mode, the simplest to understand, is illustrated in figure 13 and box B. One property of this mode, however, is that the same plaintext will always produce identical ciphertext for a given encryption key. This characteristic makes the ECB mode less desirable, especially for repetitive messages or messages with common content (e.g., routing headers or logon identifications) because a known plaintext cryptographic attack is more easily mounted, i.e., where both the encrypted and unencrypted text are available to the cryptanalyst.


DES is a "private key" cryptographic algorithm, which means that the confidentiality of the message, under normal conditions, is based on keeping the key secret between the sender and receiver of the message. (See the section on key distribution, below.) The other principal form of algorithm is called a' public key" system, which uses two keys that are mathematically related-one that each user publishes and one that he keeps secret. Using a public key system, many people can encrypt messages sent to a particular correspondent (using his or her public key), but only that correspondent can decrypt messages because the decryption key is (in principle) kept secret. These algorithms are discussed in more detail below, and also in appendixes C and D.

The development of encryption algorithms has been a rather idiosyncratic, scattered process, and is likely to continue to be. The academic community of cryptographic researchers is a growing and active one, although its numbers are relatively small compared to some other scientific fields.³Only a handful of people in the United States outside NSA have attempted seriously to create, validate, and implement new high-quality encryption algorithms. Most algorithms currently in use can be traced to the work of a few individuals. Cryptographic research requires a high level of ability in specialized areas of mathematics and/or computer science. Different skills are required

[&]quot;Ted Goeltz, "Why Not DES?" Computers and Security, vol. 5, March 1986, pp. 24-27.

³R Rivest, Mrssachrastra Institute of Technology, personal communication with OTA staff, Feb. 4, 1987.

56 Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

SOURCE: NBS FIPS Publication 74, Apr. 1, 1961, pp. 21-23.

to develop operational safeguards than for the oretical research.

Despite the relatively small size of the scientific community, cryptography has been a controversial science. For example, there have been controversies concerning attempts by NSA to control Federal research funding as well as the publication and patenting of private sector and academic results in cryptographic research during the past decade for rea-sons of national security. NSA does not at present have the legislated authority to require prepublication review of independent, nongovernment research.

However, following the controversy sparked in part by secrecy orders imposed in 1978 on two patent applications for cryptographic inventions, NSA, in concert with some academic researchers, instituted a voluntary review for

cryptography manuscripts.5 Through this process, researchers may submit manuscripts to NSA prior to their publication, giving NSA the opportunity to request suppression of sensitive material. Although many researchers and research institutions take part in this voluntary process, others do not, considering it a threat to the free exchange of scientific ideas.'

The voluntary review service is similar to the one proposed by the Public Cryptography Study Group of the American Council on Education (ACE), which was assembled in 1980 at the request of NSA. The group accepted the premise that "some information contained in cryptology manuscripts could be inimical to the national security of the United States. It recommended a voluntary rather than statutory solution to this problem.'However, son Congress, House Committee On Government Opera-

a... Congress, House Constitute Off Garwanizat Print tions, "The Covernment's Classification of Private ideas," Thirty-Fourth Report (House Report No. 96-1540), 96th Cong., 2d sear., Dec. 22, 1980. "See: "Brief U.S. Suppression of Proof Stirs Anger," The New York Times, Feb. 17, 1987, p. C3 "Report of the Public Cryptography Study Group, " Aca-deme, vol. 67, December 1981, pp. 372-382.

Tom Ferguson, "Private Locks, Public Keys, and Stats Secrets: New Problems in Guarding Information with Cryptog-raphy, "Harvard University Center for Information Policy Re-search. Program on Information Resources Policy, April 1982.

Ch. 4-Security Safeguards and Practices . 57

Box B .- An Example of DES Encryption

The Electronic Codebook (ECB) mode is a basic, block, cryptographic method which transforms 64 bits of input to 64 bits of output as specified in FIPS PUB 46. The analogy to a codebook arises because the same plaintext block always produces the same ciphertext block for a given cryptographic key. Thus a list (or codebook) of plaintext blocks and corresponding ciphertext block theoretically could be constructed for any given key. In electronic implementation the codebook entries are calculated each time for the plaintext to be encrypted and, inversely, for the ciphertext to be decrypted.

Since each bit of an ECB output block is a complex function of all 64 bits of the input block and all 56 independent (non-parity) bits of the cryptographic key, a single bit error in either a ciphertext block or the non-parity key bits used for decryption will cause the decrypted plaintext block to have an average error rate of 50 percent. However, an error in one ECB ciphertext block will not affect the decryption of other blocks, i.e., there is no error extension between ECB blocks.

If block boundaries are lost between encryption and decryption (e.g., a bit slip), then synchronization between the encryption and decryption operations will be lost until correct block boundaries are reestablished. The results of all decryption operations will be incorrect until this occurs.

Since the ECB mode is a 64-bit block cipher, an ECB device must encrypt data in integral multiples of 64 bits. If a user has less than 64 to encrypt, then the least significant bits of the unused portion of the input data block must be padded, e.g., filled with random or pseudo-random bits, prior to ECB encryption. The corresponding decrypting device must then discard these padding bits after decryption of the chapter text block.

The same input block always produces the same output block under a fixed key in ECB mode. If this is undesirable in a particular application, the CBC, CFB or OFB modes should be used. An example of the ECB mode is given in table B1.

Table B1 .- An Example of the Electronic Codebook (ECB) Mode

The ECB mode in the encrypt state has been selected. Cryptographic key = 8123456769abode* The plaintext is the ASCII code for "Now is the time for all." These seven-bit characters are written in hexadecimal notation (0, b7, b6,..,, b1). Plaintext DES input block DES oulput block Time Ciphertext 4e61772569735074 4e81772169712374*3fa40e8a984d4815 66652074696 66520 68652074696 66520 6a271787ab8883/9 666172205156520 6661722501616123 893651ec+5553553 3fa40e8a984d4815 6a271787ab8883f9 2 3 893c51ec4o553b53 893c51ec4o563b53 The ECB mode in the decrypt state has been selected. Time Cipnertex: DES input block DES output block Plaintext 3fa40e8a984d4815 3fa40e8a984d4815 4e51772059732074 68652074696 d6520 4e6f 772069732074 6a271787ab8883f9 68652074696d6520 2 6a271787ab8883f9 895c61ec4553b53 66617220615c5c20 593c5het4b583t63 666f7220616c6c20 SOURCE: NBS, FIPS Publication 81, Dec. 2, 1980, pp. 12-13.

some researchers, including one member of the ACE group, felt that even voluntary restraints would affect the quality and direction of basic research in computer science, engineering, and mathematics.^{*}

"The Case Against Restraints on Nongovernmental Research in Cryptography: A Minority Report by Professor George 1. Davida." Acedence December 1981, pp. 379-382. Currently, although some researchers feel that tensions between NSA and the research community have eased, others still consider that the prospect of NSA controls may discourage researchers, particularly academics, from pursuing problems related to cryptography. The issue continues to simmer, particularly because cryptography presents some

58 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

interesting mathematical problems. For example, a controversy recently arose when the U.S. Patent and Trademarks Office, at the request of the U.S. Army, placed a secrecy orderwhich the Army later requested be rescindedon a patent application filed by Israel's Weizmann Institute. The patent application dealt with an area of mathematics called "zeroknowledge proof, " pioneered by Silvio Micali and colleagues at the Massachusetts Institute of Technology, that is considered to hold great promise for identification procedures ranging from credit card verification to military "friend or foe" recognition signals.8

Another controversy concerns NSA's decision not to recertify DES when it comes up for its 5-year review in 1987. NSA announced in 1986 that it will continue to endorse cryptographic products using DES until January 1, 1988, but not certify the DES algorithm or new DES products after that date, except for electronic funds transfer applications. However, DES equipment and products endorsed prior to January 1,1988, maybe sold and used after that date. In justifying this decision, NSA argues that DES has become too popular and widespread in use, and thus too attractive a target for adversaries seeking to crack it. Some observers have expressed concern that NSA decision implies that DES is no longer secure. However, NSA has stated that there are no known security problems or risks involved with the continued use of DES equipment.

Instead of recertifying DES, NSA plans to provide and certify three classified algorithms. The new algorithms will use tamper-protected, integrated circuit modules directly in the products of qualified vendors. This decision officially affects only U.S. Government agencies and contractors, but it may discourage others from using DES except for electronic finan-cial transactions. " The NSA plans affect safeguard vendors in two major ways: first, only selected U.S. vendors will be allowed to purchase the modules for incorporation into their products, and second, classified information (and the need to handle and protect such information) will be introduced into the product design process." Also, some industry sources have expressed concern that the new secret algorithms are of uncertain reliability and will likely allow NSA itself to eavesdrop on their communications.

In any case, industry has certain needs, most notably for easily exportable encryption devices and software-based encryption, that the new algorithms are unlikely to meet. Many experts consider software-based encryption less secure than hardware-based encryption, in part because the key might be exposed during encryption. Also, encryption using software is much slower than that using hardware or firmware devices. Nevertheless, some private sector users prefer software because it is inexpensive and compatible with their existing equipment and operations. For instance, reader surveys conducted by Security magazine in 1985 and 1986 found that about half of the respondents stated that they used encryption software.

To date, there are no Federal software encryption standards and NSA has stated that it will not endorse software encryption products. Also, the new encryption modules are not

"These data were reported in: Kerrigan Lyndon, "protect-ing the Corporate Computer, Security World, Oct, 1985, pp. 35-66; and Susan A. Whitehurst, "How Business Battles Com-puter Crime, "Security, October 1986, pp. 36-60. Of the 1985 survey respondents, 48 percent reported using data encryption software compared to only 19 percent reporting use of data en-cryption hardware. Of the 1986 respondents, 47 percent reported using encryption software; the percentage using encryption hard-ware was hot reported.

[&]quot;The invention was made by Adi Shamir, Amos Fiat, and Uriel Feige. According to press accounts, the research had pre-viously been cleared by NSA's voluntary review process, and NSA intervened to have the secrecy order reversed. The New York Times, Feb. 17, 1987: "A New Approach to Protecting Secrets Is Discovered," p. Cl; and Brief U.S. Suppression of Proof Stirs Anger., p. C3. "Harold & Damiss, Jr., National Security Agency, letter "Harold & Damiss, Jr., National Security Agency, letter

N/2338 to DataPro Research Corp., Dec. 23, 1985.

[•]The Treasury Departress: has embarked on a major plan using DES to authenticate electronic funds transfers. For these applications, Treasury will certify the DES and DES-based equipment. See the Devicement Composed computing

equipment. See eb. 5. "S. Linner, Digital Equipment Corp., personal communica-tion with OTA staff, Dec. 24, 1986. See cb. 5 for a description of vendor eligibility requirements. "IEBE Subcommittee on Privacy, meeting at OTA, July 8,

^{1986.} ¹⁴These data were reported in: Kerrigan Lyndon, "protect-

exportable. NSA has not yet announced whether it will provide exportable modules for use by the private sector. Thus, the NSA decision not to recertify DES has cast doubt on the reliability of the algorithm without providing a replacement that can meet the full range of users' needs. Chapter 6 discusses Federal policy in more detail.

OTA's analysis suggests that there are certain kinds of algorithms not widely available that would substantially increase the range of applications for which encryption would be useful. These include algorithms that are very fast (require little processing time), secure enough to ensure confidentiality for relatively short periods (e.g., days or months for financial transactions, as opposed to years or decades for defense and intelligence information), and easily implemented in software, especially software for microcomputers. In addition, because of the widespread acceptance of DES for unclassified information, some experts argue that it would be fruitful to develop an improved version of that algorithm that would lengthen the key while using the same essential scheme. However, the commercial market for cryptographic safeguards is still new and small, and it has thus far been dominated by DES. Although a number of firms-mostly NSA contractors or spinoffs of these-are reportedly working on new encryption algorithms and products for the commercial market, ' as of early 1987 public-key systems are the only area of encryption algorithm development in which substantial nongovernment research and development is evident. Developing a new algorithm may take anywhere from 5 to 20 person-years, so many firms-except, perhaps, large firms that ordinarily devote such substantial resources to long-term research and development-may hesitate to invest in a new cryptographic product for a market that, so far, has been shaky.

Ch. 4—Security Safeguards and Practices •59

Message Authentication

An "authentic" message is one that it is not a replay of a previous message, has arrived exactly as it was sent (without errors or alterations), and comes from the stated source (not forged or falsified by an imposter or fraudulently altered by the recipient). '7 Encryption in itself does not automatically authenticate a message. It protects against passive eavesdropping automatically, but does not protect against some forms of active attack. "Encryption can be used to authenticate messages, however, and the DES algorithm is the most widely used cryptographic basis for message authentication.

As the use of electronic media for financial and business transactions has proliferated, message authentication techniques have evolved from simple pencil-and-paper calculations to sophisticated, dedicated hardware processors capable of handling hundreds of messages a minute. In general, the various techniques can be grouped together according to whether they are based on public or, at least in part, on secret knowledge.

Public techniques share a common weakness: they check against errors, but not against malicious modifications. Therefore, fraudulent messages might be accepted as genuine ones because they are accompanied by "proper' authentication parameters, based on information that is not secret. Using secret parameters, however, message authentication cannot be forged unless the secret parameters are compromised. A different secret parameter is usu-

^{*}S. Lipner, Digital Equipment Corp., personal communica-tion with OTA staff. Dec. 24, 1986. "Peter Schweitzer and Waizfield Diffie, personal communi-cations with OTA staff. June 2, 1986.

^{&#}x27;For a thorough discussion of message authentication and the various techniques used to astructure messages, see Da-vies & Price, Security for Computer New works: An Intoduc-tion to Data Security in Teleprocessing and Microws Funds Transfors, Ch. S. (New York, NY; J. Wiley, 1984; The descrip-tions of authentication techniques in this section follow Davies & Price closed.

tions of authentication techniques in this section follow Daves & Price closely. ""Passive attack' is described as remedicipying and "ac-tive attack' as the falsification of data and transactions through such means as: 1) alteration, deletion, or addition; 2) changing the apparent origin of the message; 3) changing the acual des-tination of the message; 4) altering the sequence of blocks of data or items in the message; 5) relaying previously transmitted or stored data to create a new false message; or 6) falsifying an encourseletra. for a genuine message. See Davies & Price, pp. 119-120,

ally required for each sender-receiver pair. The logistics for distributing this secret information to the correct parties is analogous to key distribution for encryption (see below).

If privacy as well as authentication is required, one scheme for encrypting and authenticating a message involves sequential use of DES with two different secret keys: one to calculate the authenticator (called the message authentication code or MAC) and one to encrypt the message. Even the use of a message authentication code and encryption do not safe guard against replay of messages or malice on the part of one of the corresponding parties, so various message sequence numbers, date and time stamps, and other features are usually incorporated into the text of the message. Box C discusses the use of message authentication in financial transactions. Figure 14 shows a data authentication code (synonymous with message authentication code) based on the DES algorithm.

Box C .--- Application of Message Authentication to Electronic Funds Transfer

Developments in the banking industry provide a good example of how important information Developments in the banking industry provide a good example of now important information should be safeguarded, both because of the large amounts of money involved and because of the early use of new safeguard technology by segments of this industry. Roughly \$668 billion per day was transferred over the FedWire and Clearing House Interbank Payment System (CHIPS) net-works alone in 1984, representing a 48 percent increase over 1980. "The fully-automated, online, FedWire system handled 49.5 million domestic transactions in 1986, with an average value of \$2.5 million each, for a total of \$124.4 trillion. In the same year, CHIPS handled \$125 trillion in domestic and interrustional payments for its member banks." and international payments for its member banks.

During recent decades, the financial community has made increasing use of computer and communications systems to automate these fund transfers and other transactions. Typically, the computer systems of these financial institutions are interconnected with local and long distance public and private communications networks, over which the bankers have only limited control over poten-tial fraud, theft, unauthorized monitoring, and other misuse. Their customers have an expectation of privacy and banks have the obligation to restrict details of financial transactions to those who need to know.

Wholesale and retail banking systems have somewhat different requirements for safeguards for funds transferred electronically. Wholesale bankers' requirements include message authentication and verification, as well as confidentiality of some communications; retail banking requirements additionally include authentication of individual automatic teller machines, confidentiality of customers' personal identification numbers, and communications security between the automatic tellers and the host computer. These needs are in sharp contrast with those of the defense-intelligence establishment, where confidentiality is the primary concern.

During the past decades, various technical methods have been adopted to reduce errors and to prevent criminal abuse relating to electronic fund transfers. Among these are parity checks, check-sums, testwords, and pattern checks.¹ Some of these methods are widely used in various banking networks to verify that user inputs are correct and detect errors rather than protect against criminal activity.

Wholesale banking transactions are characterized by large dollar amounts per average transaction (e.g., about \$3 million) and duly volumes of transactions that number in the thousands or tens of thousands. Retail banking transactions amounts might average \$50 and number in the hundreds of thousands. "Electronic Funds Transfer Systems Frand, "U.S. Department of Justice, Bureau of Justice Statistics, NCJ-100461, April 1986. Information on FeWsirs and CHIPS from F. Young, Division of Federal Reserve Bank Operations, personal communication with OTA staff. Feb. 12, 1987. "For a brief description of Laskwork's for test keys in banking transactions, see M. Blake Greenlee, "Requirements for Key Management Protocols in the Wholesale Financial Services Industry." *IEEE Communications Magazine*, vol. 23, No. 9, September 1985,

Ch, 4-Security Safeguards and Practices Z 61

One of the major, traditional drawbacks of encryption systems is that of key distribution. Each pair of communicating locations generally requires a matched, unique set of keys or codes, which have to be delivered in some way-usually by a trusted courier-to these users each time the keys are changed. (An alternative is to use a prearranged code book, which can be compromised, as has been well publicized in recent spy trials.) The key distribution problem rapidly becomes onerous as the number of communicators increases. ' The discovery of the public-key algorithm, noted earlier, may alleviate some of the key distribution problems—for example, to distribute the secret keys to large networks of users. keys to large networks of users.

In the late 1970s, the financial community was quick to realize the potential of the new cryptographic-based message authentication codes as a replacement for testwords. These codes allow major improvements in safeguards against both errors and intentional abuse, and facilitate the potential of future transaction growth. Thus, this community has pioneered industrywide technical standards both in the United States and worldwide.

The message authentication code is a cryptographically derived check sum based on processing the electronic fund transfer message with the DES algorithm (called the Data Encryption Algorithm in the financial services community) and a secret key. The sender calculates the code and appends it to the message. The receiver calculates a code independently based on the same message, algorithm, and secret key. Most new bank authentication systems in use or in planning utilize DES to calculate the codes. If the code calculated by the receiver is identical to that sent with the message, then there is a high level of assurance that the originator is authentic and that the content of the received message is identical to that transmitted by the sender, with no alterations of any kind. Also, some banks authenticate and encrypt their wholesale electronic fund transfers whenever practical and in countries where encryption is legally permissible.

The number of pairs of separate keys needed in a network of "n" communicators, each pair of which requires unique keys, is nin - 1) 2. Thus, a network of a communicators requires 10 separate pairs of keys, while a network of 100 communicators requires 4,500 pairs of keys. These numbers pair when considering that 10,000 banks send found transfers worldwide, the largest of which have thousands of keying rela-

1 Reservations of the properties of message authentication techniques, see R.R. Jugnerins, S.M. Matyas, and C. H. Meyer. "For a thorough discussion of the properties of message authentication techniques, see R.R. Jugnerins, S.M. Matyas, and C. H. Meyer. "Message Authentication," IEEE Communications Magazino, vol.23, No 9, September 1985. C. Helsing, Bank of America, personal communication with OTA staff, December 1986.

Public-Key Ciphers

A symmetric cipher is an encryption method using one key, known to both the sender and receiver of a message, that is used both to encrypt and decrypt the message. Obviously, the strength of a symmetric cipher depends on both parties keeping the key secret from others. With DES, for example, the algorithm is known, so revealing the encryption key permits the message to be read by any third party.

An asymmetric cipher is an encryption scheme using a pair of keys, one to encrypt and a second to decrypt a message. ¹⁹A special class of asymmetric ciphers are public-key ciphers, in which the encrypting key need not be kept secret to ensure a private communication.20 Rather, Party A can publicly announce his or her encrypting key, PKA, allowing anyone who wishes to communicate privately with him or her to use it to encrypt a message. Party A's decrypting key (SKA) is kept secret, so that only A or someone else who has obtained

RSA and knapsack algorithms, is given in Martin E. Hellman: The Mathematics of Public-Key Cryptography, "Scientific American, vol. 241, No.2, August 1979. pp. 146-157. A pictorial example of the RSA public-Key method can be found in Under-standing Computers /COMPTRE SSCIPATTE' (Alexandria, VA: Time-Life Books, 1986), pp. 112-117. "The public-Key concept was first proposed by Whitfield Diffie and Martin Hellman in their pathbreaking paper. New Directions in Cryptography," *IEEE Trans. Inform. Theory. IT-22*, 6, Navember 1976, pp. 644-654.

^{1°}See Davies & Price, ch. 8, for a more complete discussion of asymmetric and public-key ciphers. A discussion of the under-lying principles of public-key ciphers, including examples of the

Figure 14.—Federal Standard for Authentication

The DAA Authentication Process

A cryptographic Data Authentication Algorithm (DAA) can protect against both accidental and intentional, but unauthorized, data modification.

A Data Authentication Code (DAC) is generated by applying the DAA to data as described in the following section. The DAC, which is a mathematical function of both the data and a cryptographic key, may then be stored or transmitted with the data. When the integrity of the data is to be verified, the DAC is generated on the current data and compared with the previously generated DAC. If the two values are equal, the integrity (i.e., authenticity) of the data is verified.

The DAA detects data modifications which occur between the initial generation of the DAC and the validation of the received DAC. It does not detect errors which occur before the DAC is originally generated.

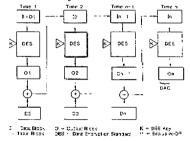
Generation of the DAC

The Data Authentication Algorithm (DAA) makes use of the Data Encryption Standard (DES) cryptographic algorithm specified in FIPS PUB 46. The DES algorithm transforms (or encrypta) 64-bit input vectors to 64-bit output vectors using a cryptographic key. Let D be any 64-bit neutral vector and assume a key has been selected. The 64-bit vector, O, which is the output of the DES algorithm when DES is applied to D, using the enclphening operation, is represented as follows. O = e(D)

The data (e.g., record, file, message, or program) to be authenticated is grouped into contiguous 64-bit blocks: D1, D2 ..., Dn. If the number of data bits is not a multiple of 64, then the final input block will be a partial block of data, left justified, with zeros appended to form a full 64-bit block. The accludation of the DAC is given by the following equations where ,+ represents the Exclusive-OR of two Vect Ors.

01 = e(DI) 02 = e(D2 : 01)03 = e(D3 : 02)

$\mathcal{F} = e[D^{\gamma} \oplus Dn \cdot 1]$


The DAC is selected from On. Devices which implement the DAA shall be capable of selected the leftmost M bits of On SOURCE: NBS FIPS Publication 113, May 30, 1985, pp. 3-6.

his or her decrypting key can easily convert messages encrypted with PKA back into plaintext." Knowing the public encrypting key, even when the encrypted message is also available, does not make computing the secret decrypting key easy, so that in practice only the authorized holder of the secret key can read the encrypted message.

 $$^{11}\rm{For}~A$ and B to have private two-way communication, two pairs of keys are required: the "public" encryption keys $PK_Aand~PK_B,$ and the secret decryption keys $SK_Aand~SK_B.$

as the DAC where 16 < N < 64 and V is a multiple of 8 A clock diagram of the DAC generation is given below, along with an example. The Clipher Block Chain ng Mode (CSC) with Initialization Vector (V) = 0 and the 64-bit Clipher Feedback Mode with IV = D1 and data equal to 22, 05. ... Dn (see FIRS FUR 80) to this yield the required DAC catalition.

Ar Example of the DAA

Dryptographic Ker = 0123456769sbode* The text is the ASCII code for "7654321 Now is the time for," These 7-bit characters are written in hexadeomal notation

These 7-bit characters are written in hexadecimal notation $0 b_1 b_2 \dots b_n b_n$.

Fext = 37363554533231204e6(77206873207468652074696d6520666*7220

"HE	2.45 TET	DES INPUT BLOCK	055 QUTPUT SU004
	373635343363135	373655473325153	2101153995-15:23
æ	4=50702060732074	6-945s13'ad24c5c	30462*Cas7* 36461
2	68EE227-69E:EE22	24261**55675*14*	26cc55 -332c.9tc
4	558*724010000C1	100 962 16533031-0	**d30*EE430*2±c4

4 32-bit CAC = 11d30165 is selected.

If the encrypting key is publicly known, however, a properly encrypted message can come from any source. There is no guarantee of its authenticity. It is thus crucial that the public encrypting key be authentic. An imposter could publish his or her own public key, PKI and pretend it came from A in order to read messages intended for A, which he or she could intercept and then read using his or her own SKI. Therefore, the strength of the public-key cipher rests on the authenticity of the public key. A variant of the system allows a sender to authenticate messages by "signing" them using an encrypting key, which (supposedly) is known only to him or her. This very strong means of authentication is discussed further in the section on digital signatures below.

The RSA public key is one patented system available for licensing from RSA Data Security, Inc. It permits the use of digital signatures to resolve disputes between a sender and receiver. The RSA system is based on the relative difficult y of finding two large prime numbers, given their product. The recipient of the message (and originator of the key pair) first randomly selects two large prime numbers, called p and q, which are kept secret. The recipient then chooses another (odd) integer e, which must pass a special mathematical test based on the values of p and q. The product, n, of p times q and the value of e are announced as the public encryption key. Even though their product is announced publicly, the prime factors p and q are not readily obtained from n. Therefore, revealing the product of p and q does not compromise the secret key, which is computed from the individual values of p and q.²²Current implementations of the ci-pher use keys with 200 or more decimal digits in the published number N. A more complete description of the RSA system, including a discussion of its computational security, is given in appendix D.

Figure 15 shows a simple illustrative example of a public-key cipher based on the RSA algorithm. This simplified example is based on small prime numbers and decimal representations of the alphabet. It is important to bear in mind, however, that operational RSA systems use much larger primes.

The RSA system was invented at the Massachusetts Institute of Technology (MIT) in 1978 by Ronald Rivest, Adi Shamir, and Leonard Adelman. The three inventors formed

Ch. 4-Security Safeguards and Practices Z 63

RSA Data Security, Inc. in 1982 and obtained an exclusive license for their invention from MIT, which owns the patent. The firm has developed proprietary software packages implementing the RSA cipher on personal computer networks. These packages, being sold commercially, provide software-based communication safeguards, including message authentication, digital signatures, key management, and encryption. The firm also sells safeguards for data files and spread sheets transmitted between work stations, electronic mail networks, and locally stored files. The software will encrypt American Standard Code for Information Interchange (ASCII), binary, or other files on an IBM personal computers or compatible machines, and runs on an IBM PC/AT at an encryption rate of 3,500 bytes per second.

A number of public-key ciphers have been devised by other industry and academic researchers. Stanford University, for instance, holds four cryptographic patents, potentially covering a broad range of cryptographic and digital signature applications. Some of these patents have been licensed to various companies for use in their products.^a

Digital Signatures

Encryption or message authentication alone can only safeguard a communication or transaction against the actions of third parties. They cannot fully protect one of the communicating parties from fraudulent actions by the other, such as forgery or repudiation of a message or transaction. Nor can they resolve contractual disputes between the two parties. Paper-based systems have long depended on letters of introduction for identification of the parties, signatures for authenticating a letter or contract, and sealed envelopes for privacy. The contractual value of paper documents hinges on the recognized legal validity of the signature and the laws against forgery.

^{**}Certain special values of tpHqlcan be factored essily—wisen p and q are nearly equal, for instance. These special cases need to be avoided in selecting suitable keys. Furthermore, it is important to remember that this cipter system is no more secure than the secrecy of the private key.

[&]quot;The companies include the Harris Corp., Northern Telecom, VISA, Public Key Systems, and Cylink. Lisa Kuutila. Stanford Office of Technology Licensing, personal communication with OTA staff, Sept. 29, 1986.

54 • Detenoing Secrets, Sharing Data: New Looks and Keys for Decironic Information

Figure 15. - Public-Key Ciphers

This example is scapted from one used in *Understanding Computers/Computer Security* 💲 1986 Time-Life Books, Inc.

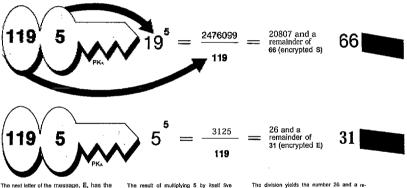
A. Converting a message to numbers

Prescribed numeric values

		LNNOPORSTU			
1 2 3 4 5 5	7 8 9 10 11	12 13 14 15 18 17 18 19 20 2	1 22 23 24 25 28 27 28	29 30 31 32	33 34 35 36 37 38 39

Converting the message

SELL 199 SHARES OF ABOD INDUSTRIES . JOHN. BMITH 19 5 12 12 37 28 27 27 37


Before a message can be encrypted by the public-key method, it must be blocked and each block assigned a numerical value. Blocks may vary in size, from one character to several; and numerical values may be assigned in many ways, within constraints imposed by the system, in the example used here, each character is treated as a block, and a simple number-assigning system is used: A = 1, B = 2, C = 3, D = 4, and so on (table at (top).

C. The Arithmetic of locking and unlocking: the sender, user B, uses PKA to encrypt a message to user A.

The number 19, assigned to the letter S, is raised to the fifth power (multiplied by itself five times), as diclated by the second part of PKA (5).

The result of 19 raised to the fifth power--2,476,099--is divided by the first part of PKA, the number 119.

The division yields the number 20.807 and a remainder of 66. Only the remainder is important. It is the value of the encrypted letter S.

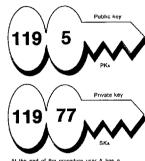
assigned value 5. Using the second part of PKA, this number is raised to the fifth power,

The result of multiplying 5 by itself five times—3,125—is divided by the other part of PKa 119.

The division yields the number 26 and a re-mainder of 31. Again, only the remainder is significant, it is the value of the encrypted letter E.

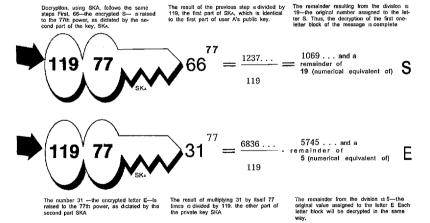
B. Creating user A's keys.

 Each user has a public and a private key, and each key has two parts To create user A's keys, two prime numbers, customatily designated P and Q, are generated by an operator at a central computer or key generation center (To quality, a prime number must pass a special mathematical test) Here. P is 7, Q is 17.


2. In this simplified example, the two primes are multiplied, and the result-N-will be the first part of both keys, N $_{\rm IS}$ 119

 Next, an odd number is chosen, in this case, 5. (This number-designated E-must also pass a special mathematical text.) It forms the second part of the public key. PKA.

4. To create the second part of the private key, the numbers are multiplied P minus 1 (6, in this case) times Q minus 1 (16) times E minus 1 (4) The result is 384


5, Next, 1 is added to the result of the previous step, ylelding 385

6. The sum is divided by E (5). The result of the division, 77 (designated D), is the second part of SKA

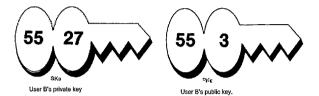
At the end of the procedure user A has a public key (119 5) and a private key (119 77) In reality, these numbers would be many digits long.

D. The recipient, user A, uses his private key, SKA, to decrypt the message.

1 P = 7, Q = 17

3 E-5

 $2.7 \times 17 = 119 = N$


 $4 \ 6 \ X \ 16 \ X \ 4 = 384$ $5 \ 384 \ + \ 1 = 385$

 $6\ 385 \div 5 = 77 = D$

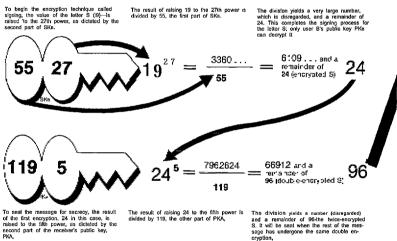
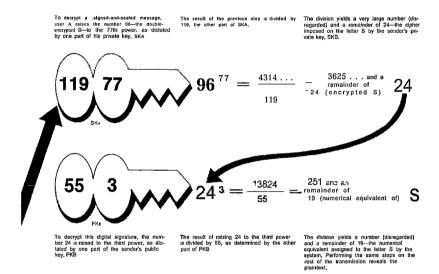

SOURCE Adapted from Computer Security elevants in VA Time-Life Books, 1986) pp 112-115

Figure 16.—Digital Signatures Using a Public-Key Cipher

This example uses the same key par (PKA, SKA) generated for user A In figure 15. In this example, the sender (user B) uses his private key (SKe) to "sign" a message intended for user A and then "seals" it by encrypting, the message with user A's public key (PKA).



When user A receives the signed and sealed message, he uses his SKA to unseal the message and the sender's PKs to unsign it,

The division yields a number (disregarded) and a remainder of 96-the twice-encrypted S, It will be sent when the rest of the message has undergone the same dcuble encryption,

Ch. 4-Security Saleguards and Practices . 67

SOURCE Adapted from Computer Security (Alexandra, VA Tima.Life Books, 1986), pp 116.117

68 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

Equivalent functions for electronic documents can be provided by using an asymmetric cipher, such as the RSA cipher, to create a digital signature for a document.³⁴This can both authenticate their contents and also prove who sent them because only one party is presumed to know the secret information used to create the signature. If privacy is required, encryption can be used in addition to the digital signature. However, the "proof" of the signature hinges on the presumption that only one party knows the secret signing key. If this secret information is compromised, then the proof fails.

The equivalent of a letter of introduction is still necessary to verify that the correct public key was used to check the digital signature—an adversary might try to spoof the signature system by substituting his or her own public key and signature for the real author's. This letter of introduction could be accomplished by several means. The system offered by RSA Data Security, Inc., provides "signed key server certificates" by attaching the corporation's own digital signature to its customers' public keys. Thus, customers can attach their certified public keys to the messages they sign. Note that although a public-key cipher system is used to set up the digital signature system, the actual text of the message can be sent in plaintext, if desired, or it can be encrypted using DES or the public-key cipher.³⁵

Figure 16 continues the simplified example in figure 15 to illustrate the digital signature technique.

 ${\tt ${\tt ${\tt ${\tt For}$}}}$ example, if the author wishes to keep the text of the message private, so that only the intended recipient can read it, he or she can encrypt the signed message, using the recipient's public key. Then, the recipient first uses his or her own secret key to decrypt the signed message and then uses the sender's public key to check the signature. In practice, the RSA digital signature system is used to transmit a DES key for use in encrypting the text of a message because DES can be implemented in hardware and is much faster than using the RSA algorithm to encrypt text in software.

NEW TECHNOLOGIES FOR PRIVATE AND SECURE TRANSACTIONS

The public-key and digital signature systems described above have important uses for key exchange and management, for authenticating messages and transactions, and for permitting enforceable "electronic contracts" to be made, including electronic purchase orders and other routine business transactions. Digital signatures might also be used in equally secure transaction systems that preserve the privacy of individuals. This would be accomplished by permitting transactions to be made pseudonymously (using digital signatures,

which would correspond to digital pseudonyms that could differ for each type of transaction).2^o That is, transactions could be made without revealing the identity of the individual, yet at the same time making certain that each transaction is completed accurately and properly.

^{*Other} public-key ciphers using different one-way functions could provide the mechanism for a form of digital signature; however, none are commercially available at present. Also, it is possible to use a symmetric cipher such as DES in an asymmetric fashion—at least two signature functions of this type have been described-but these functions are more inconvenient to use than the RSA method and require more administrative effort. See Davies & Price, ck. 9, for a general treatment of digital signatures and alternative methods.

[&]quot;(See, for example, David Chaum, "Security Without Idenuifization: Transactions Systems To Make Big Brother Obsolete, "Communications of the ACM, vol. 28, No. 10, October 1983.

Digital signatures could prevent authorities from cross-matching data from different types of transactions or using computer profiling to identify individuals who have a particular pattern of transactions. Database matching is a technique that uses a computer to compare two or more databases to identify individuals in common (e.g., Federal employees who have defaulted on student loans). Computer profiling uses inductive logic to determine indicators of characteristics and/or behavior patterns that are related to the occurrence of certain behavior (e.g., developing a set of personal and transactional criteria that make up a profile of a drug courier). 2^2

Public-key systems make it possible to establish a new type of transaction system that protects individual privacy while maintaining the security of transactions made by individuals and organizations. This new system would cre ate a security relationship between individuals and organizations in which an organization and the individuals it serves cooperatively provide mutual protection, allowing the parties to protect their own interests.

For example, instead of individuals using the same identification (e.g., Social Security numbers, which are now commonly used on drivers' licenses, insurance forms, employment records, tax and banking records, etc.), they would use a different account number or digital pseudonym with each organization they do business with. Individuals could create their pseudonyms, rather than have them issued by a central authority. A one-time pseudonym might even be created for certain types of trans-

²⁷For a further discussion of the implications of computer database matching and profiling, see the Office of Technology Resessment, Federal Government Information Technology: Electronic Hecord Systems and Individual Privacy, OTA-CIT-255, (Washington, DC: U.S. Government Printing Office, June 255, (Washington, DC: U.S. Government Printing Office, June 256, Washington, DC: U.S. Government Printing Office, June 256, Washington, DC: U.S. Bornet, State Printing Office, June 256, Washington, DC: U.S. Bornet, State Printing Office, June 256, Washington, DC: U.S. Bornet, State Printing Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, Office, June 256, Washington, DC: U.S. Bornet, State Printing, 1986)

Ch. 4-Security Safeguards and Practices .69

actions, such as retail purchases. Although individuals would be able to authenticate ownership of their pseudonyms and would be accountable for their use, the pseudonyms could not be traced by computer database matching. " On the other hand, the use of numerous digital pseudonyms might make it more complicated for individuals to check or review all their records.

A second difference is the ownership of the "tokens" used to make transactions. Currently, individuals are issued credentials, such as paper documents or magnetic stripe cards, to use in transactions with organizations. Moreover, the information contained on the electronic credentials is usually not directly reviewable or modifiable by the individual who uses it. In the scheme described above, individuals would own the transaction token and would control the information on it.

This system illustrates how technological de velopments and organizational changes can be used to mitigate potential erosions of privacy that could result from the widespread use of multi-purpose smart cards and computer profiling. However, while the technology and organizational infrastructures for the latter, at least, are already fairly well developed, the practical development of privacy systems is just beginning.

18A formal description of a "endertis' mechanism for pseu-⁷⁸A formal description of a "c-viewitik mechanism for pseudoryms is given in David Chawn and Jan-Hendrik Evertse. "A Secure and Privacy-Protecting Protocol for Transmitting Pervology: Proceedings of Crypto 86, AM. Odlyzke (ed.). Springer: Proceedings of Crypto 86, AM. Odlyzke (ed.). Springer: Weing Lecture Notes in Computer Science, forthcoming, summer 1987.
"Chawn suggests using a card computer to manage this complexity while meintaining a convenient user interface. Personal computation of NA staff, February 1987.
"Precence for Mathematics and Computer Science in Americation with Computer Science in Americation with computer Science in Americation with constructed a neuronal system and is

sterdam has recently demonstrated a payment system and is working with European groups to develop trial systems. David Chaum. personal communication with OTA staff, February 1987.

KEY MANAGEMENT

Key management is fundamental and crucial to encryption-based communication and information safeguards. As an analogy, one might say that:

The safety of valuables in a locked box depends as much or more on the care with which the keys are treated than on the quality of the lock. It is useless to lock up valuables if the 70 • Defending Secrets, Sharing Data: New Locks and Keys for Electronic information

key is left lying around. The key may be sto-len, or worse, it may be secretly duplicated and used at the thief's pleasure.

Key management encompasses the generation of encrypting and decrypting keys as well as their storage, distribution, cataloging, and eventual destruction. These functions may be handled centrally, distributed among users, or by some combination of central and local key management. Also, key distribution can be handled through various techniques: by using couriers to distribute data-encrypting keys or master (key-encrypting) keys, for instance, or by distributing keys electronically using a public-key cipher. The relative merits of each mode of key management are subject to some dehate

For example, some technical experts, including those at NSA, argue that centralized key generation and distribution, perhaps performed electronically, efficiently ensures interoperability among different users and that relatively unsophisticated users do not inadvertently use any weak keys that may exist. NSA has stated that, for reasons of security and interoperability, it plans to control key generation for the new STU-III secure telephones (see ch. 5), including those purchased by private sector users. It is also likely that NSA will control key generation for equipment using its new encryption modules.

Some critics of this plan are concerned that NSA might be required-by secret court order, perhaps-to selectively retain certain users' keys in order to monitor their communications. Others express concerns that keying material may be exposed to potentially unreliable employees of NSA contractors. At the very least, the prospect of centralized NSA key generation has generated some public confroversy.

On the other hand, the National Bureau of Standards (NBS) operates on the assumption that each user organization should generate its own keys and manage its own key distribution center. In the United States, Federal standards for protecting unclassified information in Government computer systems have been developed by NBS² which has also worked cooperatively with private organizations such as the American Bankers Association (ABA) and the American National Standards Institute (ANSI). Additionally, ABA and ANSI have developed voluntary standards related to cryptography for data privacy and integrity, including key management. The In-ternational Organization for Standardization (ISO) has been developing international standards, often based on those of NBS and/or ANSI.33 Standards of these types are intended to specify performance requirements (accountability for keys, assignment of liability) and interoperability requirements for communications among users.

According to some experts, it is technically possible to handle centralized key distribution so that the key-generating center cannot read users' messages. If this were done, it would provide efficient and authenticated key distribution without the potential for misuse by a centralized authority. However, whether NSA plans to use these techniques has not been made public.

In any event, a key distribution center of some sort is the most prominent feature of key management for multi-user applications. Such a center is needed to establish users' identities and supply them with the keys to be used for communications-usually, with "seed" keys used to establish individual session keys.

¹⁰This analogy is from Lee Neuvir-h: "A Comparison of Four Key Distribution Methods, " Telecommunications (Technical Note), July 1986, pp. 110-115. For a detailed discussion of key distribution and key management schemes, also see ch 6 of Davies & Price.

¹⁰See, for example, Federal Information Processing Standards (FIPS) Publications FIPS PUB 81, 74, and 113published by NBS. ¹⁰D. Breased. Institute for Computer Science and Technol-ogy, National Bureau of Standards. Information about NBS and standards development from personal communication with OTA staff, Aug. 6, 1986. For a general discussion of security standards based on cryptography. see: Demis K. Breasrael and Miles E. Smid. "Integrity and Security Standards Based on Cryptography, " *Computers and Security, vol.* 1, 1982, pp. 255-260.

Even in a public-key system, the initial secret keys must be computed or distributed. NBS has developed a key notarization system that provides for authenticated distributed keys and other key management functions.³¹NBS had initiated a process for developing standards for public-key systems" but is no longer pursuing this activity.

The traditional means of key distributionthrough couriers-is a time-consuming and expensive process that places the integrity of the keys, hence the security of the cipher system, in the hands of the courier(s). Courier-based key distribution is especially awkward when keys need to be changed frequently. Recently, public-key systems for key distribution have been made available allowing encryption keys (e.g., DES keys) to be securely transmitted over public networks-between personal computers over the public-switched telephone network, for example. There continue to be new developments in public-key cryptography research.

Bronslad and Smid, op. eit., p. 258.

"Tota, p. 259. "Kitali and R. Rivet." A Digital Signa-"S Geldwasser, S. Micali. and R. Rivet." A Digital Signa-ture Scheme Scuere Against Adoptive Chosen Message Attack, MIT Laberatory for Computer Science, Rev. Apr. 23, 1986,

Ch. 4-Security Safeguards and Practices , 71

To date, the best-known commercial offering of a public-key system to secure key distribution (or other electronic mail or data transfers) is by RSA Data Security, Inc. Other public-key systems have been developed, some earlier than RSA, but to date none have yet gained wide commercial acceptance. Although RSA initially attempted to implement its algorithm in hardware, their first successful commercial offerings, introduced in 1986, use software encryption. The Lotus Development Corp., one of the largest independent software companies, has licensed the RSA patent for use in future products. RSA Data Security has also licensed the patent to numerous large and small firms and to universities engaged in research, as well as to some Federal agencies. including the U.S. Navy and the Department of Labor." A new hardware implementation of several public-key ciphers (including RSA and the SEEK cipher) was offered commercially in 1986. The chip, developed by Cylink, Inc., will be used in Cylink's own data encryption products and is available to other vendors who wish to use it.³⁹

"Letter to OTA staff from Jim Bidges, RSA Data Security. "See " Cypher Chip Makes Key Distribution A Snap. " Electronics Aug. 7, 1986, pp. 30-31.

VOICE AND DATA COMMUNICATIONS ENCRYPTION DEVICES

A number of commercial products, in the form of hardware devices or software packages, are available to encrypt voice and data communications. Software-based encryption is slower than hardware encryption and many security experts consider it to be relatively insecure (because, among other reasons, the encryption keys may be 'exposed' in the computer operations). Still, some commercial users prefer software encryption because it is relatively inexpensive, does not require additional hardware to be integrated into their operations, and is compatible with their existing equipment and operations. However, this section will deal only with hardware products, in large part because only hardware products have been certified for Government use.

Since 1977, NBS has validated 28 different hardware implementations of the DES algorithm (in semiconductor chips or firmware), but NBS does not validate vendors' software implementations of the algorithm. In 1982, the General Services Administration (GSA) issued Federal Standard 1027, "Telecommunications: Interoperability and Security Requirements for Use of the DES, in the Physical Layer of Data Communications. " At present, equipment purchased by Federal agencies to protect unclassified information must meet FS 1027 specifications; vendors may submit products built using validated DES chips or firmware to NSA for FS 1027 certification. NSA has a DES endorsement program to certify products for government use, but plans to dis-

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 77 2002

continue this program on January 1, 1988. As stated earlier in this chapter, DES products endorsed prior to this date can be used indefinitely .39

Hardware encryption products use special semiconductor or firmware devices to implement one or more encryption algorithms. Online encryption (in which data is encrypted as it is transmitted and decrypted as it is received, as opposed to off-line encryption in which plaintext is first encrypted and then stored for later transmission) can be implemented in two ways. In the first method, called end-to-end encryption, synchronized encryption/decryption devices at the source and destination operate so that the transmitted information is encrypted and remains in its encrypted form throughout the entire communications path. In the second method, called link encryption, the transmitted information is also encrypted at the source, and decrypted and then reencrypted at each intermediate communications node between the source and the ultimate destination. Thus, the information is encrypted, decrypted, and reencrypted as it traverses each link along its communications path.

By late 1986, the market research firm DataPro listed about 30 vendors that were marketing commercial encryption equipment, using the DES and/or proprietary algorithms, and operating at low or high data rates (depending on the product and vendor, encryption data rates can range from about 100 bits per second up to 7 million bits per second). These vendors offer 40 or more commercial products or families of products, mostly for data encryption, although a few vendors offer products for voice encryption. Some vendors specialize in encryption-only products, while others are data communications service (turnkey) providers offering encryption products complementing the rest of their product line. Published prices range from \$500 to several thousand dollars per unit, depending on data rate and other features.

PERSONAL IDENTIFICATION AND USER VERIFICATION

Background

User verification measures aim to ensure that those who gain access to a computer or network are authorized to use that computer or network. Personal identification techniques are used to strengthen user verification by increasing the assurance the person is actually the authorized user.⁶⁰

User verification techniques typically employ a combination of (usually two) criteria, such as something an individual has, knows, or is. Until recently, the "has" has tended to be a coded card or token, which could be lost, stolen, or given away and used by an unauthorized individual; the "knows" a memorized pass-

*Purjets will note that the "personal identification" systems in common use do not actually identify a person, rather they recognize a user based on pre-enrolled characteristics. The term "identification" is commonly used in the industry, however. word or personal identification number, which could be forgotten, stolen, or divulged to another; and the "is" a photo badge or signature, which could be forged. Cards and tokens also face the problem of counterfeiting.

Now, new technologies and microelectronics, which are harder to counterfeit, are emerging to overcome the shortcomings of the earlier user verification methods. At the same time, these new techniques are merging the has, knows, or is criteria, so that one, two, or all three of these can be used as the situation dictates. Microelectronics can make the new user verification methods compact and portable. Electronic smart cards, for example, now carry prerecorded, usually encrypted, access control information that must be compared with data that the proper authorized user is required to provide, such as a memorized personal identification number or biometric data like a fingerprint or retinal scan.

³⁰Harold E. Daniels. Jr., Deputy Director for Information Security, NSA, enclosure 3, page 4 in letter S-0033-87 to OTA, Feb. 12. 1987.

Merging the criteria serves to authenticate the individual to his or her card or token and only then to the protected computer or network. This can increase security since, for example, one's biometric characteristics cannot easily be given away, lost, or stolen. Moreover, biometrics permit automation of the personal identification/user verification process.

While false acceptances and false rejections can occur with any identification method, each technique has its own range of capabilities and attributes: accuracy, reliability, throughput rate, user acceptance, and cost. As with other security technologies, selecting an appropriate system often involves trade-offs. For one thing, elaborate, very accurate technical safeguards are ineffective if users resist them or if they impede business functions. The cost and perceived intrusiveness of a retina scanner might be acceptable in a high-security defense facility, for example, but a relatively lowsecurity site like a college cafeteria might sacrifice high reliability for the lower cost, higher throughput rate, and higher user acceptance of a hand geometry reader. In banking, where user acceptance is extremely important, signature dynamics might be the technology of choice. In retail sales, a high throughput rate is extremely important and slower devices would not be acceptable.

Access control technologies will evolve for niche markets. Successful commercial products for the defense and civilian niches will look very different. As of early 1987, there were no specific performance standards for most of these user verification technologies, but it is likely that these will be developed. One incentive for the development of access control standards, at least for the Government market, is the access control objectives specified in the so-called "Orange Book. "4"The development of user verification technologies, however, is being driven significantly by commer-

Ch. 4-Security Safeguards and Practices .73

cial needs. In the area of biometrics, vendors have formed an industry association. The International Biometrics Association is beginning to address industry issues including performance and interface standards and testing and has a standing committee on standards and technical support.

In short, the new access control technologies are moving toward the ideal of absolute personal accountability for users by irrefutably tying access and transactions to a particular individual. Some enthusiasts and industry experts foresee great and pervasive applications for some of the access control technologies, even to their evolution into nonsecurity applications, such as multiple-application smart cards (see above). However, a given set of access control technologies cannot, in themselves, fix security problems "once and for all. Changes in information and communication system infrastructures can eventually under-mine previously effective safeguards. Therefore, safeguards have a life cycle. It is the combination of attributes, of the safeguard technique, and of the system it seeks to protect that determines the useful life of a safeguard.

Conventional Access Controls

Password-Based Access Controls

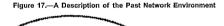
The earliest and most common forms of user verification are the password or passwordbased access controls. The problem is that passwords can be stolen, compromised, or intentionally disclosed to unauthorized parties. In addition, trivial passwords can easily be guessed and even nontrivial ones can be broken by repeated attack.⁶ Once stolen or com-

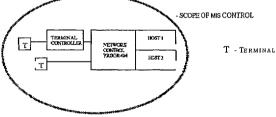
"Common password misuses include sharing one's password with other uses (including friends or owners), writing down the 'secret series of letters or numbers for reference and storing it in an unsecture place (examples of this abound, including writing passwords or identification numbers on the terminals themselves or on desk blotters, calendars, etc. or storing them in wallets or desk drawers), and permitting others to see the geonauthorization code being keyed in a the terminal. Some password's others the secrecy of the password's while this increases the secrecy of the password choices can reduce security if the password's are easy to guess (examples of trivial passwords would be a pet name, a birthdate, or license plate number).

[•] Department of Defense Trusted Computer System Evaluation Criteria. Department of Defense Standard DDD 5200.28 -STD, December 1985. Section 7.4 of the Grange Book specifies that individual accountability must be ensured whenever classified or sensitive information is processed. This objective encompasses the use of user verification, access control software, and audit trails.

74 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

promised, passwords can be disclosed widely or even posted on electronic bulletin boards. resulting in broad exposure of a system to unauthorized access. If operating system security is poor, one user who unilaterally compromises his or her own password can compromise the whole system. An even more serious weakness is that, because there may be no tangible evidence of a security breach, a compromised password can be misused over and over until either the password is routinely changed, its compromise is discovered, or other events occur (e.g., data are lost or fraudulently changed). To avoid some of these problems, many modern systems use special procedures to frustrate repeated incorrect attempts to log on.


Until the last decade or so all access points to computer systems could be physically identified, which simplified the system administrator's job of controlling access from them. In addition, users could be easily defined and their terminals had limited capabilities. A network of this type is shown in figure 17.


Now, new network configurations have emerged, characterized by personal computers linked to local area networks and connected by fixed and/or public switched telephone lines, as shown in figure 18. Users can readily extend the network by connecting modems to personal computers for pass-through access.

As a result, it is no longer possible to identify all access points. Communication nodes are no longer controlled exclusively by the organization when, for example, authorized users need to gain access from remote locations. While pass-through techniques facilitate access by authorized users, they can also be misused. For example, under some circumstances they can be used to defeat even such security techniques as call-back modems. With the increased number of network access points, the intrinsic weaknesses of the password further exacerbate the system's vulnerabilities.

Token-Based Access Controls

Network evolution, therefore, has made user identification and authentication even more critical. Some of the new access-control technologies can see through the communications network to the end user to authenticate him or her—at least as the "holder" of the proper

In the past network environment, control of all network resources resided with systems professionals. Typically, fixed-function terminals were direct-connected to the mainframe or a terminal controller. The communications parameters were specified through tables in the network control program (NCP), also under the direction of the systems group. As a result, the network was totally under the custodianship of systems professionals.

SOURCE Emst & Whitney, prepared under contract to OTA, November 1986

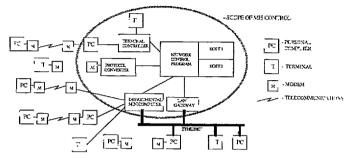


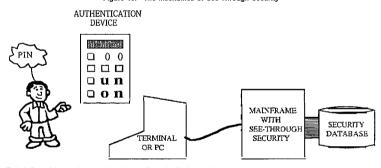
Figure 18.- A Description of the Current/Future Network Environment

In the current/future network environment, systems professionals still control direct connection to the mainframe. Through the network control program (NCP), they maintain the communications parameters that control the access through the devices directly connected to the mainframe. However, the nature of these devices is changing dramatically. Instead of fixed-function terminals, they now consist of departmental minicomputers, local area network (LAN) gateways, and personal computers, All of these devices have the capability to expand the network beyond the scope of mainframe control. This environment invalidates many of the premises upon which conventional access control mechanisms, such as passwords and call-back modems, were based.

SOURCE Ernst & Whinney prepared under contact to OTA, November 1986

token—regardless of his or her physical location. Within the limitations of current technology, token-based systems are best used in combination with a memorized password or personal identification number identifying the user to the token.

In contrast to the password, token-based systems offer significantly greater resistance to a number of threats against the password system. Many token-based systems are commercially available. By December 1986, two of these had been evaluated by NSA's National Computer Security Center (NCSC) and approved for use with the access control software packages on NCSC's Evaluated Products List. (See ch. 5 for a discussion of NSA's programs.)


Token-based systems do much to eliminate the threat of external hackers. Under the tokenbased system, the password has become a onetime numeric response to a random challenge. The individual's memorized personal identification number or password to the token itself may be trivial, but the external hacker will ordinarily not have physical access to the device, which is usually designed to be tamperresistant and difficult to counterfeit.

Hackers also have been known to make repeated tries at guessing passwords, or make use of overseen, stolen, or borrowed passwords. Repeated attack of the password to the host is also thwarted because this password is a random number and/or an encryption-based, onetime response from the token. The onetime nature of the host password also eliminates its compromise through observation, open display, or any form of electronic monitoring. As soon as a response is used, it becomes invalid. A subsequent access request will result in a different challenge from the host and a different required response from the token. An individual user can still unilaterally compromise the authentication process by giving away his or her token and memorized identification number. However, in this case, that individual no longer has access. In this way, the loss of a token serves as a warning that authentication may be compromised.

The see-through token (figure 19), used with a password, is an active device requiring complementary user action. Systems of this type currently on the market do not physically connect to a terminal, but instead provide a onetime user password for each access session. Tamper-proof electronics safeguard against reverse engineering or lost or stolen tokens. Some versions of these devices can challenge the host, effectively countering attempts at spoofing.

Two types of see-through tokens are currently available from several vendors: auto-

- Typical flow of events in a see-through security authentication session 1. User requests access to host through terminal or PC; enters user ID. 2. Host calculates random number (challenge) and transmits it to terminat. 3. User identifies timself to authentication device by entering Personal identification Number (PIN), or through biometric identification. 4. User enters challenge from host into authentication device. Device uses the security algorithm and the user seed (both in
- 4. Use there's characteristic from the second and the second second second second second second second and the user's second second
- database. Host compares its response to user response, and grants or

SOURCE Emst & Were ey, prepared under contract to OTA, November 1966

matic password generators, synchronized with the host, and challenge/response devices, using numerical key pads or optical character readers. According to some security consultants, these see-through techniques will be commonplace by the 1990s.⁴⁹

Incorporating biometrics into these techniques will produce powerful safeguards, but there are associated risks. If biometric templates or data streams containing biometric information are compromised, the implications can be quite serious for the affected individuals because the particular measurements become invalid as identifiers. These risks can be minimized by properly designing the system so that biometric data are not stored in a central file or transmitted during the user verification procedure (as they would be in a hostbased lookup mode). For many, therefore, the preferred operation for biometrics would be in a stand-alone mode, with the user carrying a biometric template in a token (like a smart card). However, tokens can be lost or stolen, and placing the biometric template on the token removes it from direct control by system security personnel. For these reasons, some installations, especially very high-security facilities using secure computer operating systems, may prefer host-based modes of operation. Figure 20 illustrates the differences between hostbased and stand-alone modes for biometrics.

Biometric and Behavioral Identification Systems

There are three major classes of biometricbased identification systems that are commercially available for user verification and access control. Since each of these systems is based on a different biometric principle, they vary widely in their technologies, operation, accuracy, and potential range of applications. The three classes are based on scans of retinal blood vessels in the eye," hand geometry,

Ch. 4-Security Safeguards and Practices - 77

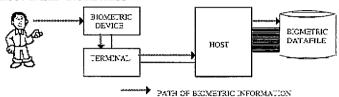
and fingerprint identification. In addition, there are currently three classes of physiological-behavioral identification systems based on voice identification, keystroke rhythm, and signature dynamics. Most systems incorporate adaptive algorithms to track slow variations in users physical or behavioral characteristics. Although these adaptive features reduce the rate of false rejections, some can be exploited by imposters. Most systems also allow the preset factory threshold levels for acceptance and rejection to be adjusted by the user. Tables 5 and 6 illustrate some of the characteristics of biometric and behavioral technologies.

Biometrics is currently in a state of flux: technologies are advancing rapidly, firms are entering and leaving the marketplace, and new products are being tested and introduced. These technologies are being developed and marketed by a relatively large group of firms-28 at the end of 1986-some are backed by venture capital, and some are divisions of large multinational corporations. Many other companies were doing preliminary work in biomet-ric or behavioral techniques. Therefore, these tables and the following discussions of biometric identification systems represent only a snapshot of the field.

There is evidence of growing interest in biometrics on the part of some Federal agencies. According to Personal Identification News, defense and intelligence agencies conducted more than 10 biometric product evaluations in 1986.⁵

Retina Blood Vessels

Retina-scanning technology for personal identification is based on the fact that the pattern of blood vessels in the retina is unique for each individual. No two people, not even identical twins, have exactly the same retinal vascular patterns. These patterns are very stable personal characteristics, altered only by serious physical injury or a small number of diseases, and are thus quite reliable for biometric identification. Factors such as dust, grease,

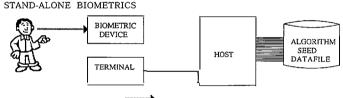

[&]quot;Robert G. Anderson, David C. Clark, and David R. Wilson, "See-Through Security." MIS Week, Apr. 7, 1986. "According: Lerensonal Identification News: Petronary 1987. a patent has been issued for another type of eye system based on measurements of the iris and pupil (Locard Flom and Aron Safir, U.S. Patent 4,641,349, Feb. 3, 1987).

[&]quot;Personal Identification News, January 1987, p. 2.

76 • Defending Secrets, Stiening Osta, New Locks and Keys for Electronic Information

Figure 20.—Biometric Identification Configuration Atternatives: Host-Based v. Stand-Alone

HOST-BASED BIOMETRICS


Description of subrenillostion session

The user of sum for sum on our season of the leminal, and enters in sucer C. The host requests biometric authentication The user enters the optimizer of the transition of the leminal, and enters in sucer C. The bost requests biometric authentication is compared with the optimizer of the transition enters is a successing spanied or deneed. Prcs

The user can gain access through any brometric device connected to the appropriate roat. The device can be associated with terminals instead of users. An organization may require fewer devices in this mode, and the devices do not need to be portable.

Cons:

The biometric information can be compromised in transmission or storage. Encrypted information can be diverted and attacked cryptologically.

÷ PATH OF BIOMETRIC INFORMATION

Description of authentication session The user requests host access through the terminal, and enters his user ID. The host calculates a random challenge and sends the challenge to the user terminal. The user identifies himself to the biometric see-through device through biometric input. The user then enters the random challenge into the device. The device calculates a response based on the algorithm and the user's algorithm seed. The user enters the response into the terminal for transmission to the host. The host performs the same calculations, obtaining the user's algorithm seed from the algorithm seed data file, and compares the responses. Access is granted or denied.

Pros:

No transmission or remote storage of the biometric information is required; the information is only maintained locally in the device itself. Also, the device does not need to be designed for connection to any particular terminal. Const

Individual biometric devices are needed for each user, and the devices must be portable. This could result in an expensive implementation. Also, administrative issues may be more difficult to resolve in the stand-atome configuration. For example, a device malifunction may result in access denied to a user; in the host-based configuration, the user would gain access through an alternate device.

SOURCE First & WT TTEX, prenared under contract to OTA November 1986

	Eye rolinal	Finger print	Hand geometry	Voice	Keystroko	Signature
Stability of measure (period)	Life	Life	Years	Years	Variablo	Variable
Cfairned odds of accepting an Im- poster (technically achievable without a high rate of false re- jections)	1 in billions	1 in millions	1 in thousands	1 In thousands	1 In a thousand	1 In hundrods
Ease of physical damage – scurces of anvironmentally caused faise rejects	Difficult-a few diseases	Happens-cuts, dint, bums	Happens-rings, swollen fingers or joints, sprains	Happens-colds, alter- gies, stress	Happens-emotions, fatigue, learning curve for device	Happens-stress, posi- tion of device
Perceived Intrusiveness of measure	Extreme to a small por- tion of population	Somewhat	Modest	Modest	None	Modest
Privacy concerns; surreptitious use of measure	Not feasible to do a scan surreptitiously	Data base can be com- pared to law enforcement files	Not a problem	Measurement can be transparent to user	Measurement can be transparent to user	Behavioris already recognized as an ID function
intrapersonal variation (chance of a false rejection, given training and experience in use)	Low	Low	Low	Moderate	Moderale	Moderale
Size of data template on current units	35 bytes	Several hundred to several thousand bytes	18 bytes to several hundred bytes	Several hundred bytes	Several hundred bytes	50 bytes to several hundred bytes
Throughput time (note: level of security affects processing time)	2 to 3 seconds	4 to 5 seconds	3 to 4 seconds	3 to 5 seconds	Continuous process	2 to 5 seconds
Cost range of products on the market (depends on configu- ration	\$6.000 to \$10.000	s3.500 to \$10,000	\$2,600 to \$8,000	\$1,500 to \$5,000 per door	\$250 per terminal and up	\$850 to \$3,500
Development goal for cost per workstation (by 1990)	000'2\$	\$2,000	sso to \$1,000	\$100 to \$250	\$100 to \$750	\$300 to \$500
Approximate number of patents outstanding	Less than 10	50	30	20 ptus	Less than 10	100
Approximate number of firms in market with products or proto- types as of summer 1986 (num- ber with prodotypes in consortheses	1(0)	3 (5)	2 (1)	2 (4)	1(1)	3 (4)

~
£.
Identification
Biometric
Automated
ę
Characteristics
5.—Major

Ch. 4—Security Safeguards and Practices • 79

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 85 2002

80. Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

	Configurations								
	Off-line:				On-line:	Applications			
		rence templa				Physical	Computer	Law	Financial
	In device	On mag str	ipe On I.C	. card	data base	security	security	enforcement	transaction
Eye/retina		-	В		u	u	В	В	
Fingerprint		-	u		u	u		u	Ð
Hand geometry	В	u	-		u	u	:	-	
Voice		_	D		u	u	в	_	D
Keystroke dynamics	В				В		в	-	D
Signature	D	U	В		u	U	ù	_	в

B = In Rela test use by industry or Government B = In Bela test use by industry or Government

SOURCE: Benjamin Miller, prepared under contract to OTA, October 1986, Data updated as of April 1987,

and perspiration that can make fingerprint techniques difficult do not affect retinal scanning, and injuries to the hand or fingers are more common than severe eye injuries.

At present, only one firm produces a retinascanning identification device. One of its current models, mainly used for physical access control, was introduced in September 1984. Subjects look into an eyepiece, focus on a visual alignment target, and push a button to initiate the scan (done using low-intensity infrared light). The retinal pattern scanned is compared with a stored template and identification is based on a score that can range from -1 to +1, depending on the degree of match. A new, low-cost version introduced at the end of 1986, uses a hand-held unit (the size of a large paperback book). It is intended for controlling access to computer terminals.

Potential applications are varied, but early purchasers are using the system for a range of uses, from physical access control to employee time-and-attendance reporting. Installations for physical access control have included a national laboratory, banks, a state prison, office buildings, and hospital pharmacy centers. According to the trade press, 300 units of the system had been shipped to end-users, original equipment manufacturers, and dealers by early 1986. "Some overseas users are also beginning to order the systems.

*Personal Identification News, April 1986.

While retina scanning is fast, accurate, and easy to use, anecdotal reports suggest that the technique is perceived as being personally more intrusive than other biometric methods. Nevertheless, at the end of 1986, retinal technology accounted for the largest installed base of biometric units."

Hand Geometry

Several techniques for personal identification using aspects of hand geometry were under development or in production as of early 1986. First developed in the 1970s, more than 200 hand geometry devices are in use nationwide.

The oldest hand geometry technique was based on the length of fingers and the thickness and curvature of the webbing between them. Other techniques use the size and proportions of the hand or the distances between the joints of the fingers; infrared hand topography, palm print and crease geometry, or transverse hand geometry (viewing the sides of the fingers to measure hand thickness as well as shape). Some of these techniques combine the biometric measurement with a personal identification number. The biggest measurement problems with these devices involve people who wear rings on their fingers or whose fingers are stubbed or swollen.

The use of hand geometry systems was limited initially to high-security installations because of the cost and physical size of the

[&]quot;Personal Identification News, January 1987, p. 3.

equipment. However, technological advances have lowered equipment cost and size, thus extending the market to medium-security facilities, such as banks, private vaults, university food services, and military paycheck disbursing. According to vendors, users include insurance companies, a jai alai facility, engineering firms, and corporate offices. At the same time, more sophisticated systems being developed for high-security areas, such as military and weapons facilities, use a television camera to scan the top and side of the hand.

Fingerprints

Fingerprints have been used to identify individuals since the mid-1800s." Manual fingerprint identification systems were based on classifying prints according to general characteristics, such as predominant patterns of loops, whorls, or arches in the tiny fingerprint. ridges, plus patterns of branches and terminations of the ridges (called minutiae). Fingerprint file data were obtained by using special ink and a ten-print card; fingerprint crosschecking with local and national records was done manually. The cross-checking process began to be automated in the late 1960s and by 1983 the Federal Bureau of Investigation (FBI) had converted all criminal fingerprint searches from manual to automated operations. 'g Some State and local law enforcement agencies are also beginning to automate their fingerprint records at the point of booking.

Several firms sell fingerprint-based systems for physical access control or for use in electronic transactions. The systems generally operate by reading the fingerprint ridges and generating an electronic record, either of location of minutia points or as a three-dimensional, terrain-like image. The scanned live print is compared with a template of the user's

"For a complete discussion of fingerprint identification tech-niques, see: "Fingerprint Identification," U.S. Department of Justice, Federal Bureau of Investigation (rid): and The Science of Fingerprints, U.S. Department of Justice, Federal Bureau of Investigation, (Washington, DC: U.S. Government Printing Office, Rev. 1264).

"Charles D. Neudorfer, "Fingerprint Ascenston: Progress in the FB 1's Identification Division, FBI Law Enforcement Bulletin, March 1986.

prerecorded print. The user is verified if the recorded and live print match within a predetermined tolerance. Alternative modes of operation use an individual password, identification number, or a smart card carrying the template fingerprint data. Costs vary according to the system configuration, but they are expected to fall rapidly as more systems are sold and as very large scale integrated (VLSI) technology is used.

By mid-1986, about 100 fingerprint-based systems had been installed, mostly in highsecurity facilities where physical access or sensitive databases must be reliably controlled. Some units, however, have been installed in health clubs, banks, and securities firms, either to control access or for attendance reporting. Also, firms are beginning to find overseas markets receptive. Potential applications will be wider as the price and size of the systems decrease. The bulk of near-term applications are expected to be mainly for physical access control, but work station devices are progressing.

Voice Identification

Subjective techniques of voice identification -listening to speakers and identifying them through familiarity with their voices-have been admissible evidence in courts of law for hundreds of years." More recently, technical developments in electronics, speech processing, and computer technology are making possible objective, automatic voice identification, with several potential security applica-tions and important legal implications.⁵¹The sound produced by the vocal tract is an acous-

*Historical and theoretical discussion of voice identification

"Filtractical and theoretical discussion of voice identification and its legal applications can be found in: Oscar Tosi. Voice Identification: Theory and Legal Aspirations 1 Baltimare, M.D. University Park Press, 1979, "Although courts in several jurisdictions have ruled that voiceprints are scientifically unreliable, courts in some States, including Maine, Massachusetts, and Rhode Island, consider them to be reliable evidence. A recent ruling by the Rhode Is-and Supreme Court allowed a jury to consider evidence of wince-print comparisons and to decide stellor evidence of wince-print comparisons and to decide theory involved is that every human voice is unique and that the qualities of unique-ess can be electronically reduced ... iState v. Wheeler, 84 86-6C, Au, July 29, 1985, Saurce: Providence: August 1985, p. 2. p. 2.

82 • Defending Secrets, Sharing Data: New Locks and Keys for Electronic in Information

tic signal with a phonetic and linguistic pattern that varies not only with the speaker's language and dialect, but also with personal features that can be used to identify a particular speaker.

Voice recognition technology has been around for some time,² but personal identifi-cation systems using it are just beginning to reach the market, mainly because of the formerly high cost and relatively high error rates.⁵⁵Some large electronics and communications firms have experimented with voice recognition systems for many years, but are just now developing systems to market.'

An important distinction should be made here between technologies to understand words as spoken by different individuals (speech recognition) and technologies to understand words only as they are spoken by a single individual (speech verification). Voice identification systems are based on speech verification. They operate by comparing a user's live speech pattern for a preselected word or words with a pre-enrolled template. If the live pattern and template match within a set limit, the identity of the speaker is verified. Personal identification numbers are used to limit searching in the matching process. According to manufacturers and industry analysts, potential applications include access control for computer terminals, computer and data-processing facilities, bank vaults, security systems for buildings, credit card authorization, and automatic teller machines.

Signature Dynamics

A person's signature is a familiar, almost universally accepted personal verifier with well-established legal standing. However, the problem of forgery-duplicating the appearance of another person's signature-raises substantial barriers to the use of static signatures (i.e., recognizing the appearance of the signed name) as a secure means of personal identification

Newer signature-based techniques use dynamic signature data that capture the way the signature is written, rather than (or, in addition to) its static appearance, as the basis for verification. The dynamics include the timing, pressure, and speed with which various segments of the signature are written, the points at which the pen is raised and lowered from the writing surface, and the sequence in which actions like dotting an "i" or crossing a "t' are performed. These actions are very idiosyncratic and relatively constant for each individ-ual, and are very difficult to forge."

A number of companies have researched signature dynamics over the past 10 years and several have produced systems for the market. The systems consist of a specially instrumented pen and/or a sensitive writing surface. Data are captured electronically and processed using proprietary mathematical algorithms to produce a profile that is compared with the user's enrolled reference profile or template. The systems work with an identification number or smart card identifying the profile and template to be matched.

Prices for these systems are relatively low compared with some other identification technologies. Combined with the general user acceptability of signatures (as opposed, say, to fingerprinting or retinal scans), this is expected to make signature dynamics suitable for a wide range of applications." Potential financial applications include credit card transactions at the point of sale, banking, automatic teller machines, and electronic fund transfers. Systems are currently being tested in bank-

^{**}The basics of most voice systems can be traced to work over the past 20 years at AT&T Bell Laboratories. *Personal Identification News*, October 1985. ^{**}See Tosi, "Fingerprint Identification," U.S. Department of Justice, Federal Bureau of Investigation (rid); and *The Science* of *Fingerprints*, U.S. Department of Justice, Federal Bureau of Investigation (Washington, DC: U.S. Government Printing Office, Rev. 12:749, ch. 2. "Personal Identification News, January 1986.

Several signature dynamics systems have adaptive fea-tures that can allow a person's signature to vary slowly over time; enrollment procedures require several signatures to set the reference signature profile and users are permitted more than one (usually two) signature attempts for identification. "George Warfel, "Signature Dynamics: The Coming ID Method, Data Processing and Communications Security, vol. 8. No. 11, doi: 8, No. 1. (n.d.)

ing (check cashing) and credit card applications, where they might eventually replace dial-up customer verification systems. ⁵⁷ Systems connected to a host computer could also provide access control as well as accountability and/or authorization for financial transactions and controlled materials, among other uses.

Keyboard Rhythm

Early work, beginning in the 1970s, on user verification through typing dynamics was done by SRI International and, with National Science Foundation (NSF) funding, the Rand Corp.58 In 1986, two firms were developing commercial personal identification systems based on keyboard rhythms for use in controlling access to computer terminals or microcomputers, including large mainframe computers and computer networks. One of the firms acquired the keystroke dynamics technology from SRI International in 1984 and contracted with SRI to develop a product line. In 1986, the firm reported that it was developing 11 products configured on plug-in printed circuit boards and that it planned to test these products in several large corporations and Government agencies in 1987. By mid-1987, the firm had contracts with over a dozen Fortune 500 corporations and five Government agencies to test its products."" A researcher in the second

sonal communications with OTA staff, Aug. 4. 1987.

Ch. 4-Security Safequards and Practices • 83

firm, who had received an NSF grant in 1982 to investigate typists' "electronic signatures, formed a venture corporation in 1983 to commercialize an access control device based on the technique. He was awarded a patent in late 1986

Keyboard-rhythm devices for user verification and access control are based on the premise that the speed and timing with which a person types on a keyboard contains elements of a neurophysiological pattern or signature that can be used for personal identification.⁶⁹The stored "user signature" could be developed explicitly or so that it would be transparent to the user-perhaps based on between 50 and 100 recorded log-on accesses or 15 to 45 minutes of typing samples if done openly and explicitly, or based on several days of normal keyboard work if done transparently (or surreptitiously). The stored signature could be updated periodically to account for normal drifts in keyboard rhythms. These types of devices might be used only at log-on, to control access to selected critical functions, or to prevent shared sessions from occurring under one user log-on. The prices of these systems depend on their configuration: current estimates range from \$1,000 for a card insert for a host computer capable of supporting several work stations to \$10,000 for a base system that could store 2,000 user signature patterns and support four channels that communicate simultaneously.

"Some speculate that this method would only be effective for experienced typists, rather than erratic "hunt and peck" novices, but at least one of the firms claims that the method can be implemented for use by slow or erratic typists as well.

ACCESS CONTROL SOFTWARE AND AUDIT TRAILS

Once the identity of a user has been verified, it is still necessary to ensure that he or she has access only to the resources and data that he or she is authorized to access. For host computers, these functions are performed by access control software. Records of users' accesses and online activities are maintained as audit trails by audit software.

Host Access Control Software

To provide security for computer systems, networks, and databases, user identifications and passwords are commonly employed with any of a number of commercially available addon software packages for host access control, Some have been available since the mid-to-late

¹ Ibid. ²R. Stocken Gaines, Wilkern Lisowski, S. James Press, and Norman Shapiro, ²Authentitation by Keystroke Timing: Some Preliminary Results. ² R-2526 -N SF. The RAND Corp. Santa Morite, C.A. May 1980. ⁴ "Rob Harricon. International Binaccess System Corp. pr-⁴ conventionations: with OTA starf. Aug. 4, 1987.

84 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic II7 Information

Box D.-Host Access Control Software

A number of host access control software packages are commercially available that work with a computer's operating system to secure data and the computing resources themselves. Access control software is designed to offer an orderly method of verifying the access authority of users. As such, it can protect the system, its data, and terminals from unauthorized users and can also protect the system and its resources from unauthorized access to sensitive data and from errors or abuses that could harm data integrity.

Access control software intercepts and checks requests for system or database access; the various commercial packages vary in the ways they check requirements for authorized access. Most require both user identification and a password to allow access; the user's identification determines his or her level of access to the system hardware and files. Passwords may be changed from time to time, or even (in some systems) encrypted. To prevent unauthorized users from guessing passwords, most of these systems limit the number of incorrect access attempts before logging the user off and sending a security alert message (including the user's identification number). Some packages generate their own passwords; these tend to be more difficult for intruders to guess, but also are more difficult for authorized users to remember. The data files containing user identification numbers and passwords are critical to system security because knowledge of correct identification number and password combinations would allow anyone access to the system and its most sensitive files. Therefore, some access control packages do not allow even security administrators to know user passwords—users set up their own, or the system generates the passwords, which may change frequently. The structure of system-generated passwords is being studied to make them easier to remember.

Access control software packages allow for audit features that record unauthorized access attempts, send violation warning messages to security, and/or log the violator off the system. Other audit features include keeping a log of users' work activities on a daily basis, printing reports of use and violation attempts, and allowing security officers to monitor users' screens. These packages can also be used in conjunction with special facility-specific security access controls implementing other restrictions (time-of-day, database, file, read-only, and location/terminal) written in custom code to fit the application environment. Versions of access control software packages are currently available to protect a variety of manufacturers' mainframe operating systems and minicomputers.

Development of software for commercial host access control began in the early 1970s. Currently, there are more than 24 software packages from different vendors. These packages are designed to work with a variety of host configurations (CPU, operating system, storage space, interfaces to other system software).

SOURCE: DataPro Research Corp., "All About Host Access Control Software, " 1S5'2-001, June 1985,

1970s. (See box D.) As of 1986, three access control software packages were market leaders: RACF, with some 1,500 installations since 1976; ACF2, developed by SKK, Inc., and marketed by the Cambridge Systems Group, with more than 2,000 installations since 1978; and Top Secret, marketed by the CGA Software Products Group, with more than 1,000 packages installed since 1981.⁶

[•]DataPro, reported in Government Computer News, Dec. 5, 1986, p. 40.

In all, more than two dozen software packages are being marketed, some for classified applications. These packages vary widely in their range of capabilities and applications, and are usually either licensed with a one-time fee or leased on a monthly or yearly basis. Fees and maintenance can range from several hundred dollars up to \$50,000 per year.

Instead of the "add-on" software packages mentioned above, the operating systems of many computers include some level of access

Ch. 4-Security Safeguards and Practices .85

control built into the basic system software. Most of the built-in systems offer features comparable to the add-on systems designed for commercial use." The number of new computer operating systems incorporating access control and other security features is expected to increase.

Commercial access control software packages commonly rely on users memorizing their identification numbers or passwords keyed into the terminal. Thus, they tend to rely on the "something known" criterion for security. They also tend to permit a single individual-in principle, the security officer-access to the central files containing users' authorization levels and, although less prevalent in newer systems, their users' passwords. A characteristic of the higher security packages is that they are designed for applications in which users with varying levels of authorization are using a system containing information with varying degrees of sensitivity. An example is a system containing classified information, where some is classified "confidential" and some "secret."

NSA's National Computer Security Center (NCSC) has provided Federal agencies with criteria to evaluate the security capabilities of trusted computer systems. According to the NCSC definition, a trusted computer system is one that employs sufficient hardware and software integrity measures to allow its use for processing simultaneously a range of sensitive or classified information. The trusted system criteria contained in the so-called "Orange Book, ⁶⁵ developed by NSA, define four classes of security protection. These range from Division D (minimal protection) up through Class Al of Division A (verified protection). NCSC also evaluates access control software products submitted by vendors and rates them according to the Orange Book categories. The evaluations are published in the Evaluated Products List, which is made available by NCSC to civilian agencies and the public. As of May 1987, eight products had received NCSC ratings and more than 20 others were being evaluated.

Despite their importance to host computer security, particularly for classified applications, a detailed look at trusted operating systems is beyond the scope of this OTA assessment. A number of computer security experts, including those at NSA, consider trusted operating systems to be crucial to securing unclassified, as well as classified, information. They consider access controls to be of limited value without secure operating systems and the NCSC criteria, at least at the B and C levels, to be of significant value in both classified and commercial applications.⁶¹However, other computer security experts have questioned whether design criteria appropriate for classified applications can or should be applied to commercial applications or even to many unclassified Government applications. (See ch. 5.)

The recent debate over the applicability of what some term the 'military' model to commercial computer security had progressed to the point where plans were made for an invitational workshop on this topic to be held in the fall, 1987."This specific area of concern illustrates the issue of whether or not it

[&]quot;S. Lipner, personal communication with OTA staff, Dec. 24, 1986. "Department of Defense Trusted Computer System Evalu-

⁵Uppartment of Defense Irusted Computer System 2-100 ation Criteria, Department of Defense Standard Dol S200.24-STD, December 1985. Two companion Dol documents (Yel-low Books) summarize the technical aritonale behind the com-puter security requirements and offer guidance in applying the standard to specific Federal applications. Computer Security Requirements-Guidance for Applying the Department of De-fense Trusted Computer System Evaluation Criteria in Specific Environments, CSC/STD-003-85, June 25, 1985; and Technical Rationale Pablind CSC/STD-203-39: Computer Security Require-ments, CSC/STD-10435, June 25, 1985.

[&]quot;Harold E. Duwiels, Jr., NSA S-0022-87, Jan. 21, 1987. Sale-guards currently used by the private and civil sectors have re-ceived B- and C-level ratings. "See, for example, David D. Clark and David R. Wilson." A Comparison of Commercial and Milliary Computer Security Pol-cies. "Proceedings 1987 IEEE Symposium on Security and Privacy (Dakland, CA: Institute for Electrical and Electronic Engineers, Apr. 72-79, 1987." "The WorkShop on Integrity Policy for Computer Informa-tion Systems will be held at Bentley College, Watthars...MA in the fall, 1987. It is being organized by Ernst & Wikners, rad is co-sponsored by the Association for Computing Machin-ery, the Institute for Electrical and Electronic Engineers, the National Bureau of Standards, and the National Computer Secu-National Bureau of Standards, and the National Computer Secu-rity Center.

is in the Nation's best interests to assign to one agency—namely, NSA—the task of meeting all the needs of the Government civilian agencies and the private sector while continuing to carry out its other missions. These concerns will be raised again and explored in chapters 5 and 7.

Audit Trails

Another major component of computer security, usually part of a host access control system, is the ability to maintain an ongoing record of who is using the system and what major actions are performed. The system's operators can then review this "audit trail" to determine unusual patterns of activity (e.g., someone consistently using the system after office hours) or to reconstruct the events leading to a major error or system failure.

In the past few years, software has begun to combine auditing with personal identification. An audit log can record each time a user seeks access to a new set of data. Figure 21 shows a sample audit log. Audit trail software is routinely recorded on most mainframe computers that have many users. Such software is available but seldom used on similar minicomputers, in part because it slows down the performance of the system and is only rarely available for microcomputers.

Audit trails are among the most straightforward and potentially most effective forms of computer security for larger computers and multi-user minicomputers. However, the fact that they are easily available for these machines does not mean that they are effectively used. Many system managers either do not use the audit trails or rarely if ever review the logs once generated. For example, OTA found that only 58 percent of 142 Federal agencies surveyed use audit software for computers containing unclassified, but sensitive information. Only 22 percent use audit software for all of their unclassified, but sensitive systems.⁴⁷ Similarly, a 1985 General Accounting Office (GAO) study that exam.ined 25 major computer installations found that only 10 of them met GAO's criteria for use of audit trails.⁴⁸

Part of the reason why audit trails are not more widely and effectively used is that they tend to create voluminous information that is tedious to examine and difficult to use. Technical developments can ease this problem by providing tools to analyze the audit trail information and call specified types or patterns of activities to the attention of system security officers. Thus, it would not be necessary, except in case of a disaster, to review the entire system log.

ADMINISTRATIVE AND PROCEDURAL MEASURES

Important as technical safeguard measures like the ones that have been described above can be, administrative and procedural measures can be even more important to overall security. For example, encryption-based communications safeguards can be rendered useless by improper management of "secret" encryption or decryption keys (see below). In the field of computer security, technical measures of the types mentioned above are almost useless if they are not administered effectively. While they can only be raised briefly here, some

[&]quot;Incorrection: Security, Inc., "Vineratilities of Public Telecommunications Systems To Unauthorized Access," OTA contractor report, November 1986. "Woltams & Franklin, General Accounting Office, statement

[&]quot;Wilson S. Franklin, General Accounting Unice, statement on Automated Information System Security in Federal Civilian Agencies, before House Committee on Science and Technology, Subcommittee on Transportation, Aviation, and Materials, Spith Cong. Ist. sess., Oct. 29, 1985.

Ch. 4-Security Safeguards and Practices • 87

Figure 21 .-- Example Reports From Audit Trail Software Exemple 1 Security alars. / System the renord modification Time: 27-CCT-1986 08:43:09.49 PID: 00002420 User Name: SYSTEM Rec Mod: Fields Mod: SMITH PASSWORD PRIVILEGES Example 2 Security alarm / File access failure Time: 27-OCT-1986 11:11:15.76 PID: 00002402 JONES JUAO: [SYS0.] [SYSEXE] TPU.EXE _DUA1: [DESNC.PH2]DOCS.DIR; 1 User Name: Image: File: READ WRITE Xode: Example 3 ----Security alarm / Login failure Tsername: SUBST (1,3)
25-DEC-1986 12:28:48.
25-DEC-1986 12:28:47. UIC: Finish time: Account: <net> Start time: Elapsed time: Processo: time: Process ID: 00000573 0 00:00:00. Owner ID: Derminal mape: 0 00:00:00. Remote mode addr: 35001 Priority: А Frivilege <31-33>: FFFFFFFF Frivilege <63-32>: FFFFFFFF Report node mane: Report ID: APPLE BANANA Final status code: 00D380F4 Queue entry: Cueve same: Cob case: Final status text: 410GIN-P-NOSUCEUSEE, no such user Page faults: 114 Direct:Co-Page faulty-peeds: 2 Buffered lo: Page Saults: Page Sault ceads: а 9 144 Volumes potnied: Images executed: 0 Feak working set: 144 Feak page file: 534 No files accessed through (DECNET) 1

Audit trail software (either part of the computer's operating system or an addwon program) can record in detail the activities taking place on a computer system. The first example above reports a manager ("SYSTEN") modifying a user's ("sNTEN") password and privileges (the activities that user is allowed to perform on the system). The second records a user ["JCNES") atterpting to access a file for which be coes not have privileges. The third reports strated user of that system. A system there is allowed to perform on the system of the loce in to a system there is a system there is a subscript user of that system. A system there is a a thorized user of the state system.

SOURCE: Drate Education Cold., (SX)

88 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

of the most important aspects of computer security administration include: $^{\mbox{\tiny 60}}$

- Maintaining a Written Security Policy and Assigning Responsibilities for Security. Many organizations simply do not have a policy regarding computer security, or the policy is unavailable to computer users, or the policy is not followed. Computer security experts report that one of the most important factors in encouraging good computer security is for users to know that management is indeed committed to it. Also, it is important that each individual in the organization be aware that protecting information assets is part of his or her responsibility.
- Password Management. Password-based access control systems are much less effective if computer users write their passwords on the wall next to their terminal, if they choose their birthday or spouse's name as their password, or if passwords are never changed. Thus, policies to encourage reasonable practices in password systems are not only essential, but are

[™]Tar a more complete discussion of administrative procedures for computer security, see U.S. Congress, Office of Technology Assessment, *Federal Government Information Technol ogy:* Management, Security, and Congressional Oversight, *OTA-CT-237* (Washington, DC: U.S. Government Printing Office, February 1986). Additionally, the General Accounting Office (FAQD) has issued many reports over the last decade identifying major information security problems and surveying information security practices in Federal agencies (see tables 4-5 in the February 1986). The Grant Accounting of these GAO reports). probably one of the simplest and most neglected ways to enhance security.

- Reviewing Audit Trails. Similarly, audit software is of little value unless the logs created by its use are reviewed.
- Training and Awareness. Relatively simple programs can help users understand what kind of security problems the organization faces and their role in enhancing security.
- Periodic Risk Analyses. Such an analysis involves examining each computer system, the sensitivity of the data it handles, and the measures that are in use or should be considered to protect the system.
- Personnel Checks. Organizations may wish to avoid putting employees with certain kinds of criminal records or financial problems in jobs with access to sensitive information. It maybe difficult, however, to perform such checks without raising concerns about employee privacy.
- Maintaining Backup Plans and Facilities. Many organizations do not have any policy or plans for what to do in the event of a major disaster involving an essential computer system. For example, in 1985 only 57 percent of Federal agencies had (or were in the process of developing) backup plans for their mainframe computer systems."

¹¹⁹Data from OTA's Federal Agency Request given in ch. 4 of Federal Government Information Technology: Management, Security, and Congressional Oversight, OTA-CTF-29 (Washington, DC: U.S. Government Prinding Office, February 1986).

COMPUTER ARCHITECTURES

The computer itself has to be designed to facilitate good security, particularly for advanced security needs. For example, it should monitor its own activities in a reliable way, prevent users from gaining access to data they are not authorized to see, and be secure from sophisticated tampering or sabotage. The national security community, especially NSA, has actively encouraged computer manufacturers to design more secure systems. In particular, NCSC has provided guidelines for secure systems and has begun to test and evaluate products submitted by manufacturers, rating them according to the four security divisions discussed above. A more thorough discussion of secure computing bases is beyond the scope of this assessment.

While changes in computer architecture will gradually improve security, particularly for

Ch 4-Security Saleguards and Practices . 89

larger computer users, more sophisticated architecture is not the primary need of the vast majority of current users outside of the national security community. Good user verification coupled with effective access controls, including controls on database management systems, are the more urgent needs for most users.

COMMUNICATIONS LINKAGE SAFEGUARDS

In the past few years it has become increasingly clear that computers are vulnerable to misuse through the ports that link them to telecommunications lines, as well as through taps on the lines themselves. Although taps and dial-up misuses by hackers may not be as big a problem as commonly perceived, such problems may grow in severity as computers are increasingly linked through telecommunications systems. Similarly, computer and other communications using satellite transmissions motivate users to protect these links.

Port-Protection Devices

For some computer applications, misuse via dial-up lines can be dramatically reduced by the use of dial-back port protection devices used as a buffer between telecommunications lines and the computer. The market for these is fairly new, but maturing. Some products are stand-alone, dial-back units, used for singleline protection; others are rackmounted, multiline protection units that can be hooked up to modems, telephones, or computer terminals. Some 40 different models of commercial dialback systems were being sold in 1986, with prices ranging from several hundred to several thousand dollars (on the order of \$500 per incoming line), depending on the configuration, features, and number of lines protected. Some, but not all, models offer data encryption as a feature, using DES and/or proprietary algorithms.

In addition to these dial-back systems, security modems can be used to protect data communications ports. These security modems are microprocessor-based devices that combine features of a modem with network security features, such as passwords, dial-back, and/or encryption. Security modems featuring encryption must be used in pairs, one at each end with the correct encryption key and algorithm to encrypt and decrypt communicated data and instructions. About 20 different models of commercial security modems were available in 1986, with various combinations of features, such as password protection, auditing, dial back, and/or encryption. Security modems featuring encryption algorithms.

According to DataPro Research Corp., the market for security modems has been in a period of rapid change since the early 1980s—new and advanced products have been introduced, more users have adopted remotely accessible data operations, and prices have continued to fall. Prices for security modems range from less than \$500 to almost \$2,000, depending on the features included.

An example of the use of this type of port protection follows: When a remote user wants to logon to the machine, the security modem is programmed to answer the call, ask for his or her log-on identification and password, and then (if the identification and password are proper) call back the computer user at the location at which he or she is authorized to have a terminal. There may be some inconvenience in using the device, however, if authorized computer users frequently call from different phone numbers. In addition, there are ways to thwart dial-back modems, such as using "callforwarding" at the authorized user's phone to route the computer transmission elsewhere to an unauthorized phone or user.

Dial-back devices are generally considered too inconvenient to use for one very important application: large-scale database applications, such as commercial credit reporting services. These services can receive thousands of calls 90 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

a day from terminals in banks and credit bureaus seeking to verify a person's credit worthiness, often prior to a loan or establishment of a line of credit. The use of dial-back devices for such an application are time-consuming and costly, and are difficult to administer given the number of terminals that would have to be connected to the devices. Thus, those who illegally obtain passwords to access these systems can now use them relatively easily.

Other technical measures may be useful for large public database systems, however. For example, remote terminals in retail stores could be equipped to perform a coded "handshake" with the host computer before they can gain access to the database. Or, as the telecommunications network evolves toward wider use of digital signaling equipment, it will increas-ingly be possible for host computers to know the phone number of the person trying to gain access and thus to check that phone number against its list of authorized customers.

Satellite Safeguards

In the military, highly directional antennas, spread-spectrum modulation, and laser communication are among the measures used or contemplated to protect satellite signals from unauthorized reception. Other methods range from analog scrambling to full digital encryption. For encryption, equipment costs and operational complexity tend to inhibit the widespread deployment of elaborate encryption techniques. This is particularly true for pointto-multipoint networks, where the expense of providing a large number of end users with decryption equipment may not be worth the cost.

The current trend is toward the implementation of security by some service providers. For example, the video industry, one of the largest users of satellite capacity, has begun to use analog scrambling techniques to discourage casual theft of service. Methods for encrypting video signals range in complexity from line-by-line intensity reversal to individual pixel scrambling. Decryption keys may be broadcast in the vertical blanking interval. In some systems, individual subscribers can be addressed, providing selective access to the programming. Scrambling techniques are also being used by some providers of point-tomultipoint satellite data networks. Since these transmissions are typically digital, more effective encryption systems can be used. In some cases, a device using the Data Encryption Standard is provided in the subscribers' receiver equipment and key distribution is accomplished in real time to selected end users (i.e., to those who have paid to receive the broadcast) .7

The Department of Defense has had continuing concerns for the vulnerability of satellites to interception and other misuse. The Senate Committee on Appropriations approved funds in 1986 for the first year of a 5-year plan developed by NSA that would enable DoD to reimburse satellite carriers for installing encryption equipment to protect their transmissions.

Fiber Optic Communications

Fiber optic communications links provide an important barrier to misuse, because more sophisticated means are required to eavesdrop. Further, means are available to detect some forms of misuse.

Common Carrier Protected Services

Several common carriers encrypt their microwave links in selected geographic areas as well as their satellite links that carry sensitive Government communications. These protected services are largely the result of NSA and GSA procurements beginning in the 1970s. Much of the following discussion is excerpted from the OTA contractor report, "Vulnerabilities of Public Telecommunications Systems to Unauthorized Access, prepared by Information Security Incorporated, November 10, 1986.

[&]quot;Note that the Electronic Communications Privacy Act of "Note that the Electronic Communications Privacy Act of 1986 (Public Law 199-508) and the private use of "backyard" earth stations legal for the purpose of receiving certain satel-lite transmissions, numes it is low the purpose of direct or in-direct commercial advantage or for private gain. "See U.S. Senate, Committee on Armed Services, National Defense Authorization Act for Fiscal Year 1987. Report 199-331 to accompany S. 2638, 99th Cong. 2d sess., July 8, 1986, p. 295.

Ch. 4-Security Safeguards and Practices .91

The latest transmission technology using fiber optics is difficult to intercept because the information signal is a modulated light beam confined within a glass cable. NSA judges both cable and fiber media to provide adequate pro-tection for unclassified national securityrelated information.

American Telephone & Telegraph Co. (AT&T) protects its microwave links in Washington, D. C., New York, and San Francisco. Major routes are being expanded with fiber optics. Protected service is available in areas designated by NSA and private line service can be offered over selected fiber and cable routes. In addition, customized encryption can be installed on selected microwave and satellite circuits for particular customers."

MCI offers protected terrestrial microwave services in those areas specified by NSA. In addition, MCI offers customers the option of protected service in many other major metropolitan areas. These customers can order protected communications throughout the MCI portion of the circuit, using MCI fiber optic system, encrypted terrestrial microwave, and the MCI-encrypted satellite network.

U.S. Sprint, which reached 2.5 million customers or about 4 percent of all long-distance customers in 1986, intends to create an all-fiber network by the end of 1987 that the company expects will carry more than 95 percent of its voice and data traffic.⁷⁵ This means any call or circuit carried via the Sprint network would be harder to intercept than unprotected microwave transmissions. Currently, Sprint has protected microwave radio in the NSA-designated areas.

International Telephone & Telegraph Co. (ITT) offers protected service in the NSA-designated zones, consisting of protected microwave circuits. The service is available now on

"'AT&T Communications Security, marketing literature, 1986. ¹⁴MCI Communication Protection Capabilities, marketing

Iterature, 1988.
 U.S. Sprint, 'Clear.ine.'' vol. 2. Issue 5. Kansas City, MO,

U.S. Spirint, View, Vol.2, ISSUE 5, Rainsas City, MO, Spiring 1987. ⁵ "M^Thy U.S. Spirint Is Building the First Coast-to-Coast Fi-ber Optic Network and What's in It for You, "U.S. Sprint mar-keting literature, 1986.

a private-line basis to commercial or business customers.

The American Satellite Co. offers two types of protected carrier services. One uses an encrypted satellite service that has been approved by NSA for protecting unclassified, but sensitive information. The second service uses protected terrestrial microwave in the NSA-designated areas. This also is available on a private line basis in the service areas.⁷⁸

Pacific Bell plans to have a complete fiber and cable network between all its central offices within 10 years. These plans include most of San Francisco, Los Angeles, and San Diego; at present, two fiber rings in San Francisco are routed past all major office buildings. Pacific Bell can offer customers in the San Francisco area fiber optic routes throughout most of their operating region. In Los Angeles, the company has 27 locations used in the 1984 Olympics linked by fiber optic facilities and is extending its network. These offerings can be augmented with new fiber spurs to a customer's location. All of these services are filed with the California Public Utility Commission as special service engineering and are not tariffed by the FCC."

Bell Communications Research (Bellcore) is developing a service that would be implemented by the Bell Operating Companies. The service would provide special handling and routing over protected or less-interceptable (i.e., fiber or cable) lines. The initial goal is to use as much as possible the inherent security features of the existing network. This service is being designed to meet NSA requirements for protecting unclassified government information so that costs (for Government contractors) will be reimbursable under National COMSEC Instruction 6002 and Department of Defense Instruction 5210.74. Bellcore anticipates that this service will also be available to other commercial customers,")

"ITT Private Line Service-Security, marketing literature, 1986, Protected Communications Services, marketing literature,

1986. "OTA Federal Agency Data Request, op. cit.

" Ibid., ref. 2'7.

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 98 2002

Chapter 5 Improving Information Security

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 100 2002

CONTENTS

Page	
Findings	
Introduction	
National Security Objectives and Programs	
Background	
Federal Telecommunications Protection Programs	
Government Procurements	
Carrier Protection Services	
DoD Programs Under NSDD-145	
Implications of Merging Defense, Civilian Agency, and	
Private Sector Requirements	
Objectives and Programs Unrelated to National Security	
Background	
Private Sector Motivations110	
Linkages in and Contrasts Between Defense Intelligence and	
Other Needs	
Technical Standards Development	
Inherent Diversity of Users' Needs127	

Box

Box									Page
Е.	Indicators	of	Private	Sector	Interest	in	Safeguards	•	

Tables

Tables	
Table No. P	lage
7.0verall Ranking of Importance as an Adversary	18
\$. Top-Priority Computer and Information Security Concerns Mentioned	
by Respondents	20
9. Perceived Impacts From NSDD-1451	20
10. Selected Civilian Technical Standards for Safeguarding Information	
Systems	26

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 102 2002

Chapter 5 Improving Information Security

FINDINGS

- The needs of institutional users are changing, expanding gradually and incrementally, as technology makes practical a broader range of applications of information safeguards. The current trend in user activities is toward controlling access to systems, linking transactions with particular individuals and authorizations, and verifying message accuracy.
- Users in civil agencies and the private sector have diverse needs to safeguard their computer and communications systems, even within any one Federal agency or industry. Organizations differ in their needs, perceptions, and attitudes towards information security, and see different incentives or mandates to secure information systems. Differences in their concerns for vulnerabilities, risks, and adversaries are probably greatest between Government intelligence agencies and other users.
- It is unclear whether anyone agency can specify and design one or a few safeguards for a wide range of users, and particularly questionable for the National Security Agency due to its propensity for secretiveness and its focus on protecting against foreign intelligence adversaries.
- Cryptography underlies some powerful safeguards that have broad application, not just for national security needs, but also for an expanding number of commercial needs, such as to ensure the integrity of electronic information and reduce the costs of routine business transactions. Advances in cryptography have stimulated new nondefense applications of the technology.
- Federal standards and guidelines have a leveraging effect on the private sector, especially in areas related to cryptography.
 It is not clear how motivated the nondefense private sector will be to use some
- It is not clear how motivated the nondefense private sector will be to use some safeguards, such as secure telephones or trusted computers, particularly if these are not easy to use and cost-effective in business applications.

INTRODUCTION

The preceding chapters illustrate the various vulnerabilities of computer and communications systems and the range of technologies that are becoming available to safeguard information in these systems. They also introduce the notion of a spectrum of adversaries, differing widely in available resources (time, money, equipment, and specialized knowledge), against whom these systems may need to be protected. This chapter examines the perceived needs of various users—defense and civilian agencies of the Federal Government, financial and other private sector users—as indicated by the actions they are taking to safeguard their domestic and international operations. It also points out some of the diversity in theirperceived needs for safeguards, both among users in the private sector and, particularly, between users in intelligence agencies and others.

96 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

The level of users' activity toward safeguarding electronic information is growing. Various factors are contributing to this interest. These factors range from wanting to improve business operations, including the reduction of potential theft and human errors, to streamlining business transactions and adhering to industry standards of due care and, in some cases, to requirements imposed by emerging Federal policies. Federal policies, for example, will influence the actions of some banks and defense contractors. No individual factor is recognized as singularly prominent in driving the use of safeguards.

Instead, business uses of electronic safeguards are in a transition phase as users continue to define their needs and as technical standards are developed, and as Federal policies and agency roles stabilize further. A number of factors have complicated the situation, however. Among these is the question of the influence of the National Bureau of Standards or the National Security Agency in setting standards for information security safeguards, and users' perceptions of the prospective reach of Federal policies requiring safeguards for unclassified information. (See ch. 6.)

One important turning point appears to have been reached in that users are now better able to distinguish between the protections provided, or not provided, by different forms of safeguards and their alignment with specific needs. Users tend to be concerned with one or more of three main objectives in seeking information safeguards: preventing unauthorized disclosure; maintaining the integrity of electronic information; and ensuring continuity of service. The needs of different communities of users vary widely and these needs are often critical for one of these objectives and less important, or nonexistent, for others. For some users there is concern for all three objectives.

In spite of the difficulty in distinguishing between users according to their objectives for information security, some cautious observations can be made. One of these is that a critical need for some users, such as intelligence agencies, is to prevent unauthorized disclosure. Most businesses and civilian agencies are particularly dependent on the integrity of certain of their electronic information, and many of these are also concerned about unauthorized disclosure. And, for some users, such as those responsible for public safety (air traffic control) and many financial services, there is an important, if not critical, need for continuity of service. Observations concerning users' objectives are important because Federal policy that is misaligned with users' needs can create significant tensions.

Government agencies' and private sector needs for information security include capabilities for authenticating the origin and integrity of messages, and for verifying the identities and authorizations of system users. The Department of the Treasury and the Federal Reserve System, for example, electronically transfer huge amounts of money every working day and, with commercial banks, are providing leadership in developing and using safeguards with these types of capabilities.

Users' needs for safeguards are by no means confined to the financial community. The use of safeguards for securing electronic information is being adopted by users in industries ranging from automobile manufacturing to grocery businesses. However, private sector needs and Government national security concerns are not identical. They differ in their perceptions of the levels of adversaries, the consequences of exploitation, and their organizational motivations and decision rules for protecting information and investing in safeguard technology.¹

In addition, private sector demand for safeguards is growing, as is its ability to produce them, as noted in chapter 4. Users tend to make selected use of a broader range of new technologies for safeguarding information that prove cost-effective or are otherwise important for business reasons. Interestingly, many of the emerging commercial uses of message integrity (authentication) techniques, e.g., for

^{&#}x27;Administrative and technical safeguards, as well as organizational policies for information safeguards, are also important for safeguarding electronic information, as noted in ch.4.

cost-reduction purposes, make use of the same cryptographic techniques used to improve the confidentiality of electronic information. Often, however, the commercial motivations for employing these techniques are unconcerned with preventing unauthorized information disclosure or protecting national security.

What emerges is a sense that although generalizations of aggregate users' needs are useful, individual users tend to have significant diversity among them. Even within one user community, such as the banking industry, there can be considerable diversity of needs, depending on size, location, operations, clients, and numbers of branches and correspondents.

This diversity of needs raises questions with regard to the proper role of the Federal Government in meeting private sector needs and the extent to which any one Federal agency can reasonably be expected to meet the safeguard needs of all users. Such a task would require an agency to interact openly and continually with a diverse public. The intensity and openness of interaction would require sigand openness of interaction would require sig-nagency such as DoD's National Security Agency (NSA).²Without a full appreciation of users' needs, there is significant risk of premature or "off-target technology standardization or imposing DoD restrictions that are unacceptable to users. At the same time, safeguards that do not meet users' needs-even those that are federally imposed-are not likely to be applied widely and may distort market forces.

The users themselves are also likely to be important in shaping information safeguards. The influence of major international business users on information security standards is only beginning to be felt, but is likely to be significant in the long term. These users can be expected to demand safeguards that integrate well into their business operations in terms, for example, of being inexpensive, exportable, interoperable, and politically acceptable in the Ch, 5-Improving Internation Security .97

many countries in which the firms do business. Their influence is already beginning to be felt through communities of industry users, such as international banking, transportation, and manufacturing.

OTA analyzed survey data to gain insights into the influence of Federal policies and standards on users' and vendors' actions. Although the effects of National Security Decision Directive 145 (NSDD-145), issued in 1984, were still evolving, there were indications, as of late 1986, that the impact of this policy had not been widely felt on nongovernment users' actions. For example, about three-fourths of the nongovernment respondents to an OTA survey question, and 46 percent of the nongovernment respondents to a separate Ernst & Whinney survey, indicated that this policy had no impact on their organizations' actions toward safeguarding unclassified information."

Moreover, OTA's research has found that some large firms feel that, in general, Federal guidelines and assistance programs have not significantly or directly contributed to their information security efforts.4 Moreover, data from Ernst & Whinney's computer security survey in 1986 shows that, of 474 respondents, two-thirds said that none of their organization's information and computer security expertise came directly from Government-sponsored assistance programs, conferences, or training programs. On average, according to estimates by both government and nongovernment respondents, only 7 percent of their orga-

See, for example, " 'Advice Most Needed . . . ' The Assess-ment and Advice Effort, " Deborah M. Claston, DoD. Presented at the Ninth National Computer Security Conference, Gathers-burg, MD, Sept. 18, 1996.

^{07 26} computer audit directors from Fortune 100 firms sur-veyed for OTA in October 1985, Ernst & Whinney found that 17 individuals (74 percent of the 23 answering this question) said that N3DD-1as had had 'no' impact on their firms' sale-garding of unclassified information, four said/NDD-145 had had 'very little' impact, and two said the directive had had some impact.

[&]quot;some" impact. Results are reported in OTA contractor report, 'OTA Com-puter Security Survey, 'Ernst& Whinney, Nov. 7, 1986. Ernst & Whinney included many questions from the OTA survey in a survey it conducted at the Computer Security Institute Con-ference in November 1986. The raw data from this Ernest & Whinney Survey indicated that, of 344 necessremact: respon-ence, 46% said that NSDD-145 had had no impact. 27% 'very little' impact. 21% 'some' impact, and 6% great' impact (see table 9). Ernest & Witzney has permitted OTA to use the raw data from this survey. ata from this survey. 'OTA survey, October 1986, op. cit.

nizations' information and computer security expertise came directly from government programs.'

Vendors of information security products are especially, and understandably, sensitive to Government policies and standards that influence the use and choice of safeguards among Government agencies and businesses. The relatively small markets for many types of safeguards make any influences on consumption of these products particularly important.

The following sections examine the range of users' motivations for using safeguard technologies to protect unclassified information and spotlight what users are doing to meet their objectives. They illustrate soome of the main objectives of users for safeguarding electronic information, ranging from national security to economic self-interest and the need to comply with established business practices.

For the purposes of this report, user objectives and actions are grouped into two categories:

- 1. those related to national security, which include a number of Federal agency actions; and
- other Government and private sector actions not directly related to national security.

The latter category includes Federal agency actions to protect financial transactions. Attention often focuses on cryptography because it is central to many powerful safeguard techniques and because the course of technological development in cryptography-based safeguards has been so tightly meshed with Federal policies.

NATIONAL SECURITY OBJECTIVES AND PROGRAMS

Background

Traditionally, national security objectives have guided the development and use of effective information security techniques. DoD has been responsible for safeguarding classified information transmitted, stored, or processed in communications and computer systems. Recently, through NSDD-145, DoD's authority has been expanded to include protecting systems containing certain unclassified information in civillan agencies and the private sector. (See ch. 6.) This includes Government and Government-derived economic, human, financial, technological, and law enforcement information, as well as personal or proprietary information provided to the Federal Government.

Federal Telecommunications Protection Programs

Most Federal agencies have adopted some policy to protect the security of the information they collect. Issues relating to the security of Federal information systems were examined in an earlier OTA report, Federal Government Information Technology: Management, Security, and Congressional Oversight.^eThis section describes selected programs to protect information systems.¹

Commercial Carrier Protection Program.-This program, begun prior to the issuance of Presidential Directive/National Security Council 24 (PD/NSC-24), involves the Nation's major telecommunications carriers. In late 1977, *The New York Times*, among other newspapers, reported that President Carter had approved a broad protection program that included rout-

[&]quot;Tais data is from Ernst & Whinney's survey administered at the Computer Security Institute Conference on Nov. 17-20. 1986.

TOTACCIT.250, February 1986. Chapter 4 of this report surveys the security of unclassified information systems within the Federal Government. "Part of this section is based on material taken from chap-

Part of this section is based on material taken from chapter IV of OTA contractor report, "Vulnerabilities of Public Telecommunications Systems to Unauthorized Access," Information Security, Inc., November 1986.

ing nearly all Government telephone messages in three cities (Washington, D. C., New York, and San Francisco) through underground cable rather than over more vulnerable radio circuits.*At the same time, research was accelerated to improve telephone security with the long-haul, terrestrial commercial carriers. As a result, entire radio channels are now protected between switching stations in the three cities. After the technology was developed to protect the microwave radio systems, the Government began to require protected service in civil and defense agencies' communications procurements. (See ch. 6 for a description of the evolution of these communications security programs.)

Currently, 450 microwave radio channels carrying more than 1 million voice and data circuits are protected. More than 1 million sensitive telephone calls are protected each day and NSA expects that almost 2 million circuits will be protected in 1988. Although this program was prompted by defense concerns for safeguarding DoD contractor communications, defense and non-defense protection requirements were aggregated for efficient bulk or networklevel protection."

Secure Voice Programs. -As reported by The New York Times in late 1977, the Executive Secure Voice Network program was initiated to provide 100 selected Government executives and surveillance targets10 with a total of 250 secure voice terminals at a cost of \$35,000 each. The equipment, intended to secure classified information up to Top Secret Compartmented, used narrowband, dial-up telephone lines. It had a mode for automatic keying based on secure distribution of the classified cryptographic key from a secure (electronic) key distribution center. NSA funded deployment of the network. 'l

Ch. 5-/reproving Information Security Ž 99

A successor, the Secure Telephone Unit II (STU-II), was developed by NSA in the early 1980s for protecting classified information up to Top Secret Compartmented, depending on the classification of the cryptographic key. The STU-II program also implemented a secure key distribution center." STU-II phones, which cost about \$12,000 each, operate over ordinary telephone circuits and could be purchased until December 1986. The General Services Administration (GSA) was made system manager to support the purchase, operation, and maintenance of more than 3,000 STU-II phones by civilian agencies, according to NSA.

The new STU-III program was announced by NSA in March 1985, subsequent to NSDD-145. STU-III units will be produced for use by Federal agencies, Government contractors, and certain other private sector firms. NSA, which will manage the cryptographic keys plans to produce 500,000 phones at \$2,000 each. As of late 1986, orders for 49,640 units (to be delivered in late 1987) had been placed, with options for additional units. The average unit price was \$3,827. As of January 1987, 37,116 of the initial orders were for defense agencies and 9,675 for nondefense agencies. About 200 STU-III phones had been ordered by Government contractors.]' The STU-III program is discussed in more detail later in this chapter.

[&]quot;Carter Approves Plan to Combat Phones by Other Na-tions, "New York Times, Nov. 20, 1977, p. 34. "Harold E. Daniela NSA S-0033, Feb. 12, 1987, p. 2 of En-

[&]quot;Harold E. Daniels Non Groups, ed. ed. ed. ed. Coloure 3. "Commarked Security, Inc., "Admaratikas of Public Tele-communications Systems to Unauthorized Access, OTA con-tractor report, reference 12, November 1986. "NSA S-0033, op. cit., p. 2 of Enclosure 3.

¹²In th,STU-II Program. key distribution for the civil agenup, h_STU-11 Program. key distribution for the eivil agen-cies is handled by GSA Key Distribution centers. GSA is the overall Government manager for the Federal Secure Telephone System (STU-11 phones), serving some 65 to 70 agencies and managing their STU-11 Installations, maintenance, system man-agement, and procurement. In the successor STU-11 Program, the NSA will do all keying through the NSA Key Management Center. Source: Discussion between OTA staff and GSA Spe-cial Programs Division and Electronic Services Division staff, plans for maintenance and servicing have not yet been an-nounced. nounced

Under the FSTS Systems Manager charter from NSA. GSA Under the FATS systems manager trainet industing operat-ing the FATS systems manager trainet industing operat-ing the FSTS Key Distribution Centers (KDCs) It serves users in the defense and civil agencies, as well as some private con-sultants to the Government. Source: Hardd E. Dawis, Jr., NSA 5-033-87, Fb. 12, 1987, n. 3 of Enclosure 3. -MSA occurrate L provide a portion of the cost to sustain -MSA occurrate L provide a portion of the cost to sustain GSA's systems manager responsibilities. -INSA S-0033-87, op. cit.

Government Procurements

GSA issued the first public competitive procurement for private line protected service between Washington, D.C. and San Francisco in 1980. This set the precedent for numerous subsequent procurements, particularly in having the carriers provide protection. A turnkey system was provided by RCA American with integrated protection for about a 5percent cost premium over the unprotected service. The 5-year contract cost about \$15 million to protect 312 circuits.

More recently, the Defense Communications Agency (DCA) awarded a major contract to AT&T for a nationwide, all-digital service called the Defense Commercial Telecommunications Network (DCTN). The 10-year, \$1billion program provides optional encrypted service among 161 locations, with link encryptors integrated into the carrier's earth stations. DCTN is designed to be flexible enough to allow for changes in technology and in customer requirements over the 10-year period. It also permits the use of video teleconferencing, switched voice, Autovon, and a wide range of data modes. DCA has also awarded a \$100million contract to Hawaii Telephone for a secure turnkey network called the OAHU Telephone System.

The largest program to date is for GSA's Federal Telecommunications Service-2000 (FTS-2000), a commercial communications service for Federal agencies."FTS-2000 will eventually replace GSA's current long-distance telephone system, which has some 1.3 million subscribers who total 1.5 billion call-minutes per year.

FTS-2000 differs from the current system in that it will procure telecommunications services rather than leased facilities. FTS-2000 includes contractor-provided security features. GSA expects to award a contract by late 1987, with services to begin in 1988 at an expected first-year cost of \$350 million. FTS-2000 is intended to be compatible with the evolving alldigital systems, generally referred to as the Integrated Services Digital Network (ISDN).

In its draft request for proposal, GSA required four specific security features for FTS-2000. The system has to:¹⁶

- protect terrestrial radio systems in certain geographic areas and the communications links of any satellite system used to provide services;
- provide protection from loss, degradation, or alteration by intrusion for the portion of those databases and information processing systems that are critical for continued reliable operation;
- protect common channel signaling paths by NSA-endorsed encryption equipment or by other approved, nonencrypted forms of protection (e.g., fiber, cable); and
- provide the capability to encrypt the command and control link of any-spacecraft launched after June 17, 1990.

FTS-2000 is expected to significantly affect communications security in the private sector, according to National Security Agency officials. It is expected to stimulate the development of link encryptors, protected services, signaling channel protection, and commandand-control encryption for satellites, thereby making these features more readily available to the private sector and at lower prices.

Carrier Protection Services

Microwave radio systems began to be used to augment the existing AT&T cable infrastructure in the 1950s. By the 1960s they had become the dominant long-distance transmission medium. New companies providing communications services in the 1970s typically installed microwave circuits or used new communication satellite technology. In the 1980s, optic fiber has become the favored medium for new point-to-point circuits, while satellite is still preferred for many broadcast applications.

[&]quot;Enferce Action Securities, Inc., OTA contractor report, "Vulnerabilities of Public Telecommunications Systems to Unauthorized Access, November 1986, and OTA staff discussions with GSA officials August 1986.

^aInformation Securities, Inc., OTA contractor report, "Vunerchüties of Public Telecommunications Systems to Unauthorized Access, " November 1986, reference 19.

(See ch. 3 for a discussion of the vulnerabilities of these systems.)

The protected services offered by the communications common carriers stem in large part from Government efforts in the 1970s to develop and install safeguards for microwave circuits. Satellite carriers also developed various means of encrypting transmissions relayed by their geostationary satellites. These efforts were sparked by Government encryption requirements and, in one instance, by anticipated commercial demand. Several major carriers are developing various additional services, including protected private-line services, microwave and satellite link encryption, and all-fiber net works.

At present, the interexchange carriers have announced no plans to directly protect the proposed Integrated Services Digital Network. Standards for this future network have not been decided. Nor has it been determined whether U.S. or European designs will be used. A large number of switch and PBX manufacturers are committed to providing ISDN-compatible interfaces to their customers. Users wishing to secure ISDN service can follow one of two strategies: demand protection from each carrier for the portion of the circuit provided by that carrier (link protection) or encrypt their own communications from end to end."Endto-end encryption would be under the user's control, with the encryption taking place in the user's PBX, in the carrier's Centrex service, or at the ISDN interface.

DoD Programs Under NSDD-145

DoD Outreach Programs. -According to National Security Decision Directive 145 (NSDD-145), the Secretary of Defense is the executive agent for telecommunications and information systems security, with the national manager being the Director of the National Security

Agency (NSA), as discussed in chapter 6. Therefore, most programs initiated under NSDD-145 are under the auspices of the National Telecommunications and Information Systems Security Committee (NTISSC), which is chaired by an assistant secretary of defense. According to NSA, the approach being taken is to focus on the national interest in addressing information security, and to develop integrated and coordinated safeguards for classified and unclassified information rather than to segregate information security concerns into defense and civilian needs. By developing integrated standards for defense and civilian agencies and for private sector use, NSA hopes to lower the cost of safeguard products and, thereby, increase their use." OTA was unable to obtain an unclassified summary of all programs initiated by DoD under NSDD-145.

The following summarizes selected DoD programs under NSDD-145 that affect civil agencies and the private sector. It is based on materials provided by NTISSC.[®]

- Civil Agency Customer Support: A branch within the National Computer Security Center (NCSC) was organized in 1986 to provide services to civil agencies and departments, including;
 - onsite security enhancement reviews to identify threats and vulnerabilities, and provide recommendations for improvements;
 - technical consultations and/or one-time review visits (less detailed reviews);
 - assistance in preparing proposals for trusted computer system procurements;
 assistance in drafting security policies; and
 - -briefings on computer security, NCSC, and other related topics.
- Trusted Computer System Training: NSA issued the Department of Defense Trusted Computer Systems Evaluation Criteria, also known as the "Orange Book," to all Federal agencies and departments in No-

¹Hardd E, Daniels, Jr., NSA S-0040-87, Feb. 20, 1987, Enclosure A. ¹⁹Letter from Donald C, Latham to OTA, KTISSC-05936.

Nov. 7, 1986.

¹¹As of late 1986, DoD appeared to be favoring a link encryption strategy. Commercial users, who do not have control over the circuit infrastructure, may be more likely to choose end-toend encryption.

102 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

vember 1985 for consideration as a national standard. To aid this review, NCSC presented briefings and tutorials to more than 70 Federal agencies.

- Special Assistant for Civil and Private Sector Programs: To fulfill its obligations under NSDD-145, NCSC, in the summer of 1986, created a senior-level position for a person to help define future directions and strategies for NCSC interactions with
- the civilian agencies and the private sector.
 Computer Security Training for Civil Agencies: NCSC has organized and is giving courses in computer security to Federal employees of the civilian agencies. The one-week courses are given twice a year and are open to all Federal agencies. Also, NCSC has initiated an annual computer security training seminar to allow computer security trainers throughout the Federal Government to exchange information on effective methods.

Data Encryption Standard (DES) Endorsement Program, -Launched by NSA in October 1982 (before NSDD-145), this program is designed to test and endorse equipment using DES to protect national security-related telecommunications in compliance with Federal Standard 1027.⁹Under the program, vendors wishing to supply endorsed cryptographic products for unclassified use by Government agencies and contractors submit their DES components (electronic devices) to the National Bureau of Standards (NBS), which validates the component correct implementation of the DES algorithm. NSA then determines whether the product meets all other Federal requirements for endorsement and certification.

By October 1986, 32 families of equipment (17 voice, 14 data, and 1 file encryptor), totaling some 400 models, had been formally endorsed."

These products are available to protect unclassified Government information and all levels of sensitive private sector information.

NSA announced in 1986 that it would terminate the DES Endorsement Program in 1988 in favor of the Commercial Communications Security Endorsement Program (see below)." According to NSA, the change was a result of several factors, including the fact that DES has been a widely applied public algorithm for 15 years and, as such, a worthwhile target for adversaries. Therefore, NSA considers it prudent for DES to be phased out over time.

The announcement has led some users to infer that DES is now unsound and, reportedly, to delay adopting safeguards because of confusion over the longevity of DES and the roles of NSA and NBS in setting standards for cryp-tographic algorithms." In particular, the American Bankers Association, which says that the U.S. banking industry had already invested years of work and several million dollars in DES-based equipment, spent 16 months (from October 1985 to February 1987) educating NSA about their business needs. ABA spokesmen have said that, "Our industry has lost momentum in adopting improved security technology, and it remains to be seen if we can overcome the damage that has been done to the perceived security of DES-based techniques.

Commercial Communications Security (COM-SEC) Development Programs .- One of NSA's stated goals is to "make high-quality, low-cost cryptography available to qualified communications manufacturers for embedding in their

^{-*} Telecommunications: General Security Requirements for Equipment Using the Data Encryption Standard, * Apr. 14, 1982.

[&]quot;Information Security, Inc., "Unreastitutes of Public Tele-communications Systems to Unauthorized Access, " OTA con-tractor report, November 1986, ref 14.

⁴³Accercting to NSA, DES products endorsed prior to Jan. 1, 1988 can be used indefinitely. Harold, E. Damiels, NSA S-0033-87, Feb. 12, 1987, p. 4 of Enclosure 3. ⁴³Harold E. Damiels, NSA S-0033-87, Feb. 12, 1987, p. 4 of Enclosure 3.

Enclosure 3. "Peter Hager: "NSA Plan to Replace DES Draws Criti-cism," *Government Computer News*, May 9, 1986. Cheryl W. Helsing, Testimony on Behalf of the American Bankers Asso-ciation before the House Committee on Science, Space and Tech-nology, Feb. 26, 1987, "Thid., Cheryl W. Helsing.

products. "26 According to NSA, "qualified' manufacturers of such products must meet four basic criteria.²⁷ These are:

- 1. The firm must not be under foreign ownership, control, or influence, as prescribed by the Defense Investigative Service (ĎIS).
- 2. The firm must have or obtain a DIS facility clearance because the cryptographic design information is classified even though the resultant products are not.
- 3. The product host in which the firm proposes to embed cryptography must, in NSA's estimation, make obvious market sense.
- 4. The company must demonstrate that it can produce products that meet or exceed NSA's minimum standards of quality and reliability y.

NSA has established two programs to achieve its goal: one to develop the host products and the other to develop the embeddable cryptographic modules. The first, called the Commercial Communications Security Endorsement Program (CCEP), is a "business method" partnership between NSA and U.S. firms to develop a variety of secure products, such as personal computers, radios, and local area networks. The approach pairs NSA's cryp-tographic expertise, as embodied in embeddable modules that implement secret NSA cryptographic algorithms, with vendors' investments to develop host products that incorporate the modules. According to NSA, the industry partner then sells a "value-added" product. As of November 1986, NSA had about 40 such partnerships arranged through memoranda of understanding." The first CCEP secure system was available in 1986. 29

The second program is another joint NSA/industry venture called the Development Center for Embedded COMSEC Products (DCECP). Eleven large U.S. corporations-Harris, Motorola, RCA, Rockwell International, Hughes Aircraft, GTE, AT&T Technologies, IBM, Xerox, Intel, and Honeywellhave joined with NSA to produce modules for use in products to be developed for the commercial COMSEC program. According to NSA, these corporations were chosen based on their expertise in making selected telecommunication products. Each firm will manufacture one or more types of the NSA modules after NSA has evaluated and approved them. Each manufacturer may embed its modules within its own host equipment, a personal computer or a secure telephone, for example, and/or sell the modules to other "qualified" host equipment manufacturers. Commercial divisions in each corporation are assisting in the design and review of the standard modules to ensure that they can be used in a wide variety of commercial equipment.

In addition to the list of endorsed DES products mentioned above. NSA also maintains lists of endorsed information security products and potential products. The information security products on these lists have been evaluated and endorsed by NSA as having met standards or requirements for use by the Government and its contractors to protect classified or unclassified, but sensitive information. The endorsement certifies cryptographic systems as having met NSA security specifications for a specified level of security. Items on their potential list are under development. As of December 1, 1986, 14 firms and some 30

^{*}NSA Press Release for Development Center for Embedded CO NI SEC Products, Jan. 10, 1986 (enclosure in letter from D. Lathan to OTA, Nov. 7, 1986). "Letter from Harry Deacks to OTA, Feb. 12, 1987, p. 5 of Eacissant's According to NSA, these criteria are prudent and not overly burchensome to potential participants. However, the requirements for security clearances from the Defense !nve-tigative Services might be seen as burchensome by some firms, especially smaller firms that do not *ordinarily* need them for their nersonnel their personnel.

[&]quot;(commercial COMSEC Endorsement Program," enclosure in letter to OTA from Donald Larkam, Nor T, 1986. "Inforcarian Security, Inc., ""Piercersklinis of Public Tele-communications Systems to Unauthorized Access, OTA co-tractor report, November 1986, p. 38 Inda, and NSA 5-0033-87, p.6of Enclosure 3.

cryptographic products were on the endorsed list; about 30 firms and products were on the potential list.

Further, NSA lists computer systems, software, or components that have been evaluated according to DoD's evaluation criteria for trusted computer systems. NSA also lists companies that provide communications encryption services and equipment evaluated according to the National TEMPEST Standard (NACSIM 5100A).

Standard NSA Product Line of Cryptographic Modules.-The "modules" being developed under the DCECP are sets of integrated circuits or printed wiring boards incorporating these "chip sets." According to NSA, each module is a general-purpose cryptographic device for digital data. The standard modules are designed to be transparent to the user, with a flexible, microprocessor-compatible interface and control structure."The standard module approach is intended by NSA to foster development of interoparable secure systems, using well-defined interfaces and common design features throughout the family of standard modules.

In its announcement for the standard Type I product line intended for classified digital information, NSA noted such additional features as tamper resistance, electronic and/or over-the-air re-keying, and enhanced transmission-error detection. There are four Type I modules, for classified applications in three general bandwidths. There also will be three Type 2 modules, intended for unclassified, but sensitive applications.

Names, specifications, and applications of the Type 1 modules are as follows:

 WINDSTER: Data rate up to 200 kb/s;
 9 cryptographic modes; suitable for handheld radios, pocket pagers, and telephones. (Note: A lower performance module called INDICTOR is also available.)

- TEPACHE: Data rate up to 10 Mb/s; 6 cryptographic modes; suitable for minicomputers, modems, local area networks, and word processors.
 FORESEE: Data rate up to 20 Mb/s; 7
- FORESEE: Data rate up to 20 Mb/s; 7 cryptographic modes; suitable for satellite links, microwave links, fiber optic links, and mainframe computers.

Type 2 modules, which will be available at an unspecified future date, have been given the names EDGE SHOT (same data rate as WINDSTER), BULLETPROOF (same data rate as TEPACHE), and BRUSHSTROKE (same data rate as FORESEE). Types 1 and 2 modules are intended to be interoperable within each bandwidth "NSA plans to key Type 1 modules through a secure key management system. It is not clear whether private firms that choose to use Type 2 modules will be able to control key generation independently of NSA.

NSA notes that the modules are designed to perform more system security functions than if they contained just a "naked" key generator chip and to leave fewer security functions for the host vendor to add on. However, to accommodate a wider range of commercial host products, NSA has an alternative com-mercial Type 2 "naked" key generator chip available to potential host vendors. Type 2 modules will be made available to qualified firms that have a memorandum of understanding with NSA, to firms under contract with NSA or other Government agencies to develop a cryptographic product, to Government agencies doing cryptographic development, and to certain other firms approved on a case-by-case basis.

Some users have expressed concerns that the embedded cryptography will not be readily compatible with their existing equipment and operations, and others note that the change is damaging to manufacturers of DES equip-

^{air}Off the Shelf Information Security Products: A Family of User-Friendly Modules for Embedding Within a Wide Range of Telecommunication Systems, NSA; enclosure to letter from D. Latham to OTA, Nov. 7, 1986.

^{**}Effortation on Types 1 and Type 2 modules were provided by NSA at a meeting of the IEEE Subcommittee on Privacy. June 18, 1986 **Harnold B. Daniels, Jr., NSA S-0033-87, Feb. 12, 1987, pp. 8-9 of Enclosure 3.

ment. To ease the transition, NSA had offered to work with manufacturers of the Data Encryption Standard (DES) components and develop pin-for-pin replaceable circuits using the new NSA algorithms, so that equipment manufacturers' investments in product designs would not be lost. According to NSA, none of the DES component manufacturers expressed interest in this plan.

STU-III Program.-NSA initiated the Secure Telephone Unit III (STU-III) program in 1984 to develop a new generation of secure telephone equipment using classified NSA algorithms (but not the standard modules being developed under the DCECP program). NSA intends that the STU-III program serve all Government agencies and private companies that require telephone security. NSA-sponsored studies have estimated a market for 2 million units, with DoD being the largest single buyer. Market studies by vendors also indicate potential sales of 1 million to 2 million units to the private sector,36 although these conclusions are admitted to be soft. According to NSA, the STU-III program will feature the capability for multilevel security, availability of Type 2 units to the private sector, and interoperability among all STU-III users. This will make the units attractive to a broad range of Government and private sector users.

The first production contracts were awarded in July 1986 to three vendors—AT&T, RCA, and Motorola. They are authorized to market their Type 2 product directory to the private sector. The 2-year, fixed-price contracts totaled about \$190 million for 49,640 units. (See section above on Secure Voice Programs.)

NSA reports that the STU-III vendors still consider the government-contractor and other segments of the private sector market to be "embryonic, in that customers have expressed interest but are waiting to see the product. Sample Type 2 units will be available in 1987, at which time vendors are expected to Ch. 5-Improving Information Security .105

begin more active marketing efforts. According to NSA, Type 2 units could be delivered to private sector customers beginning in January 1988. The production contracts contain an add-on option allowing additional STU-IIIs (see above) to be produced at a reduced unit cost, in the \$2,400 to \$2,600 range.

Almost all of the current order was for Type 1 units intended for classified uses, but 300 Type 2 units for unclassified, but sensitive information were also included in the initial contract. NSA will be the source of all cryptographic keys for the STU-III phones, including those purchased by private sector users. For the Type 2 phones, users will be able to establish their own internal procedures for key management, except key generation. Type 2 users within the Government will obtain their keys directly from NSA; private sector users will order keys from NSA via their STU-III vendors.

The Secure Data Network System.-The Secure Data Network System (SDNS) project seeks to design an architecture for secure computer networks. The project will provide a security architecture design for networks that transmit digital data between computers. The project, certain aspects of which are currently classified, is sponsored by NSA and includes participation by NBS, the Defense Communications Agency, and about a dozen computer and communications vendors.

SDNS is intended to support both classified and unclassified applications. The system will provide confidentiality, data integrity, message authentication, and access control services. The services and standards for them are being designed to be compatible with those being developed by the International Organization for Standardization (IS0). Currently, the project is in the prototype development stage. Hardware is being developed and tested for performance, interoperability, and confor-mance with ISO standards.

[&]quot;Harold E Daniels. NSA S-0033-87, Feb. 12, 1987, p. 4 of

[&]quot;"'STU-111 Program Status, " enclosure in letter from D. Lethan: to OTA, Nov. 7, 1986

^{*}NSA response to OTA questions on STU-III: NSA S-0033-87, Enclosure 1, Feb. 12, 1987. Thid

Encryption capabilities will be provided with two different NSA-supplied algorithms, both of which will remain classified. A Type 1 algorithm will be used for encrypting classified information and a Type 2 will be used for unclassified but sensitive information.

Raising Private Sector Awareness.- The Federal Communications Commission (FCC) is taking steps to alert the private sector to the vulnerabilities of communications systems. The FCC recently issued for NSA a public notice advising licensees and users that "the Nation's telecommunications systems, particularly those involving terrestrial microwave transmission media and satellites, are extremely vulnerable to unauthorized access. "This notice, which also applies to telecommunications services or equipment that bypass publicswitched services, encourages concerned users to seek assistance from NSA in "identifying approved devices for the protection of sensitive, but unclassified, national security-related communications (Government or nongovernment).

Implications of Merging Defense, Civilian Agency, and Private Sector Requirements

Advocates of combining security standards for unclassified information and guidelines for Government agencies with those for the private sector argue that aggregating markets will permit manufacturers to enjoy production economies and result in lower prices for safeguard products. Moreover, some feel that the current markets for computer and communications safeguards, particularly for trusted operating systems and cryptographic products, are "fragile. They argue that one coordinated set of Federal standards is needed to encourage and strengthen these markets. Critics of the present approach of National Security Agency (NSA) standards development and product certification see these as not fully responsive to current and evolving defense, civilian, and business needs.

There is some early evidence that NSA has already begun to encounter difficulty in satisfying the diverse needs of the private sector, beginning with the banking industry. (See ch. 6.) Moreover, NSA's controlling role may raise barriers to market entry by new vendors. At a more fundamental level, NSA's national security and signals intelligence interests in controlling encryption technology appear in tension with its new role in developing and disseminating safeguard technologies and products. (See below and ch. 7.)

Possible Barriers to Market Entry .-Only "qualified" manufacturers meeting the NSA criteria noted earlier will have access to NSA designed and endorsed standard cryptographic modules. Moreover, there will be accountability requirements for all modules and, even though the hardware modules themselves will be both unclassified and tamperproof to prevent reverse engineering, NSA may place restrictions on their export. (See below.)

The embeddable modules are being produced by the 11 large electronics firms mentioned above, NSA's "industry partners. " Because of the limited number of these firms and because they will most likely also produce host products incorporating the modules (for the Commercial Communications Security Endorsement program), some prospective entrants into the host product market have expressed concern that competition in this potentially lucrative market will be essentially limited to firms already participating in the module program. Faced with the prospect of purchasing the embeddable modules from large, vertically integrated competitors, some prospective entrants fear that NSA's tight controls on its commercial programs will limit competition.

NSA, on the other hand, does not consider the qualification criteria particularly burdensome, but, rather, reasonable. For instance, NSA notes that there are over 13,000 Defense Investigative Service cleared facilities in the United States and that cryptographic design

[&]quot;Federal Communications Commission, Security and Privacy of Telecommunications, Public Notice 6970, Sept. 17, 1986. "FCC Public Notice 6970, Sept. 17, 1986.

information is classified with access limited to U.S. entities in accordance with prudent overall security considerations. Similarly, NSA considers that decisions about the quality and market criteria will be fairly executed, with ample opportunity for vendors and potential vendors to present their cases. According to NSA, host vendor participation in the CCEP program has already exceeded participation in the DES Endorsement Program. "

As to competition in the host product market, NSA's stated intent is to make the Development Center for Embedded Communications Security Products (DCECP) modules competitively available to host manufacturers. All 11 of the DCECP module vendors have access to both Types 1 and 2 design documentation and, according to NSA, it is a vendor decision as to which module(s) to fabricate and produce. The Government owns the designs and NSA has stated that, should a particular module not be chosen by any of the 11 manufacturers for fabrication and production, or should there not be competitive sources for a given module, then the agency will seek additional sources for the modules. NSA also notes that, in order to achieve scale economies, competitors may sell to each other-a practice that is common in the electronics industry.

DoD Control of Encryption Technology.-NSA sees its signals intelligence mission to beat risk if effective cryptography were available worldwide. As a result, NSA faces tensions between its missions of encouraging domestic use of effective encryption and other safeguards while controlling the transfer of en-cryption technology overseas. Thus, its strategies to improve the availability of safeguards for use by U.S. nondefense Government agencies and businesses also include controls on the dissemination of such products and technical data, some of which have already begun to cause new tensions with the private sector.

Ch. 5-Improving Information Security 107

Cryptographic hardware and software are controlled by bilateral agreements and by patent and export control legislation and regulations, including the Export Administration Regulations, the Invention Secrecy Act (35 U.S.C. 181 et. seq.), and the International Traffic in Arms Regulations (ITAR), " as discussed in chapter 6. All equipment and systems based on DES, including those for automatic data processing file security and message authentication for electronic fund transfers, are included on the ITAR Munitions List and fall under the jurisdiction of the Department of State's Office of Munitions Control (OMC). OMC licensing agreements are coordinated with NSA. *

The exportability of cryptographic safeguards is an important consideration for many businesses that have overseas correspondents or subsidiaries. Prominent among these is the banking industry, which has spent some years developing techniques and standards for transaction authentication and confidentiality. These are based on DES, which can be licensed for export and use abroad. When NSA announced its planned replacement of DES with secret (CCEP) algorithms, bankers and the American Bankers Association (ABA) became concerned that the CCEP algorithms and modules could not be used by the financial indus-try as a substitute for DES. For one thing, reliance on one or a few algorithms would be unacceptable for use in some foreign countries or banks, even if NSA would permit their use abroad. Also, according to the initial NSA announcement, the (Type 2) modules may not be used internationally or placed in equipment for use by non-U. S. entities.

Finally, the bankers found the prospect of NSA retaining control of the cryptographic keys to be an unacceptable transfer of bank responsibility to a Government agency. As of mid-1987, NSA and ABA were still discuss-

[&]quot;Harold E. Danzels, Jr., NSA S-0033-87, Feb. 12.1987, pp 8-9 of Enclosure 2; p, 5 of Enclosure 3. ' Jbid., pp X-10 of Enclosure 2.

J. Multilaterally agreed upon export CONTROLS are determined through an international coordinating committee (COCOM, whose membership includes representatives of the United States and 1317, Salies, "J.Szalion: Office of Munitions Control, personal commu-nication with GTA staff. Sept. 24,1986.

ing whether NSA would provide an acceptable exportable module for use overseas to authenticate financial transactions. In mid-February 1987, NSA and ABA reached agreement that NSA would continue to support the financial industry's use of DES-based technology until an acceptable replacement is available.

NSA appears to be reconsidering the exportability issue for Type 2 modules. In February 1987, in response to a question from OTA, NSA officials stated that:

The NSA desires that host products employing Type 2 modules be usable by U.S. entities outside the U.S. For example, a U.S. firm oper-ating in Europe should be able to purchase and use a Type 2 product, or a foreign subsidiary should be able to use a Type 2 product as long as ownership was maintained by a U.S. entity. Use by foreign firms or individuals, when it is in the U.S. interests for interoperability is possible, depending on the country involved and inter-country agreements.

The various NSA outreach and industry partnership activities seem tailored to the agency's dual missions of encouraging the use of safeguards while controlling the spread of cryptographic and cryptanalytic expertise. For the former, NSA uses site visits, briefings, exchanges of personnel and information, and product evaluation and endorsement in addition to written standards and guidelines. For the latter, NSA makes cryptographic hardware and interface specifications generally available to host equipment vendors and users, without broadly transferring expertise in cryptographic design and cryptanalysts. For instance, it is unclear whether even the 11 module manufacturers know all the cryptologic criteria used by NSA in developing the al-gorithms, although NSA gives them the design information and expertise needed to manufacture the hardware that implements the algorithms.

In contrast, the DES standard as promulgated is public information, not limited to specific manufacturers and vendors, and provides more visibility into the algorithm itself. The fact that the algorithm was published made possible independent evaluations of its robustness, as well as (unvalidated) software implementations, thereby contributing to private sector capabilities in commercially useful cryptography.

On the other hand, NSA believes that assertions to the effect that current policies and the DCECP and CCEP programs limit competition and stifle private sector innovations and development are unsupported. According to NSA officials, the agency is actively encouraging private sector innovation and the development of information safeguards for business needs. For example, NSA cites the CCEP program, in which prospective host product vendors determine which products to produce based on their assessments of market needs.

Moreover, part of the rationale for NSA's approach is to use interfirm competition to drive down the cost of information security products like the STU-III phones. NSA and the rest of DoD have been concerned that relatively high costs have limited their use within DoD and elsewhere. The resulting small market was not attractive to producers. By making information security products more affordable, NSA hopes to increase their availability and use. In achieving this, according to NSA, "technological competitiveness is the goal in driving costs down versus cryptographic competitiveness which does nothing for cost and can have a deleterious effect on national security.

Technology Development and Dissemination .- After a number of DoD-sponsored studies and demonstration projects during the 1970s to address technical problems associated with controlling the flow of classified and other information in multiuser computer systems, the DoD Computer Security Initiative was

^{*}Cheryl W. Heleing. Testimony on Behalf of the American Banking Association before the House Committee on Science, Space, and Technology, Feb. 26, 1987. *Op. cit., Harold R. Dareis, Jr., NSA S-0033-87, p. 10 of En-

closure 2.

[&]quot;Harold E. Daniels, Jr., NSA S-0040-87, Feb. 20, 1987, Enclosures D and E.

Ch. 5-Improving Information Security .109

started in 1977. Concurrently, the National Bureau of Standards (NBS) began to define the construction, evaluation, and auditing of secure computer systems. As an outgrowth of recommendations from a 1978 NBS workshop paper on criteria for evaluating technical computer security effectiveness, and in support of the DoD Computer Security Initiative, the MITRE Corp. began to develop a set of criteria for assessing the level of trust that could be placed in a computer system to protect classified data.

In 1981, the DoD Computer Security Evaluation Center was established to continue the work started under the DoD Computer Security Initiative. The center, located within NSA, was renamed the National Computer Security Center after its responsibilities were expanded by National Security Decision Directive 145 (NSDD-145).

The National Computer Security Center (NCSC) developed the "Orange Book" criteria for evaluating multilevel security in commercial computer systems. The original criteria were published as the Department of Defense Trusted Computer System Evaluation Criteria (CSC-STD-001-83, August 15, 1983). A derivative but slightly different document was later published as DoD 5200.28-STD in December 1985. The Orange Book criteria evolved from the earlier NBS and MITRE work." NCSC has also released "Yellow Books" that help users apply the comprehensive Orange Book criteria to specific computer facilities.

The criteria specify four divisions, ranging from Division D (minimal protection) up through Divisions C (discretionary protection) and B (mandatory protection), to the most comprehensive Division A (verified protection). Each division represents an improvement in the overall confidence that can be placed in the system to protect information. Within divisions C and B, security classes such as Cl, C2 or Bl. B2, and B3 correspond to progressively stronger security features.

NSA produces a number of computer security documents ranging from trusted operating systems (the "Orange" and "Yellow Books" to forthcoming criteria for trusted computer networks and data bases." Some users apparently have reported difficulties in interpreting the Orange Book criteria at the higher protection levels; as one response to this, NSA has developed a rules-based expert system available to guide users through the Yellow Books.

The Orange Book criteria have been adopted as a DoD standard (DoD 5200.28 -STD, December 1985), and therefore these security requirements must be included in specifications for new systems being developed by DoD. However, the question of whether the Orange Book criteria and evaluated products program will best serve the unclassified, but sensitive information security needs of civil agencies and the private sector is being debated within the computer-security community, especially outside NSA. (See the section below on differences between military and commercial models of security.) As of May 1987, the NCSC's Evaluated Products List reported security class ratings according to the Orange Book criteria for 8 products, and about 20 more products were being evaluated."

[&]quot;From information on the history of the Orange Book cri-teria contained in DoD 5200.28 STD, which provides a more detailed history and rationale for the trusted computer system evaluation criteria.

evaluation criteria. "DoD Computer Security Center: "Computer Securit, Re-guirements: Guidance for Applying the DoD Trusted Computer System Evaluation Criteria in Specific Environments (CSC-STD-003-85)." June 25, 1985; and "Echnical Rationale Behind CSC-STD-003-85: Computer Security Requirements (CSC-STD-004-85), "June 25, 1985.

[•]Presentation by P. Gallagher of NSA, at an IEEE Subcom-mittee on Privacy meeting at George Washington University in Washington, D. C. Nov. 13, 1986. "Some information on the evaluated products program was contained in altert from Harold E. Dasields, Jr., NSA S-0033-87, Feb, 12, 1987, p. 7 of Enclosure 2. See also: National Com-puter Security Center, *Eventmed* Products *List for Trusted Com-puter Systems*, Dec. 1, 1986 (updated May 31, 1987).

OBJECTIVES AND PROGRAMS UNRELATED TO NATIONAL SECURITY

Background

As part of this study, OTA surveyed the data and information security procedures, policies, and practices of large U.S. corporations. The survey also tried to determine the extent to which these firms are aware of Governmentsponsored assistance and whether they have been affected by National Security Decision Directive 145.

The survey was self-administered at an October 1986 meeting of Palmer Associates, a group of computer audit directors of Fortune 100 companies. Questionnaires were completed by all 26 people present, a sample that is far too small to be representative of U.S. industry at large or for statistical generalizations.

Nevertheless, the results are of value for two major reasons. First, they illustrate the perceptions of some knowledgeable corporate leaders about security needs and practices. Second, the vast majority of the respondents were from nondefense companies (92 percent, with 42 percent from banking alone), while most of NSA's experience with the private sector has been with defense contractors. The survey results may shed some welcome light on the desirability and feasibility of NSA's plans to neet aggregated users' needs with one set of standards, guidelines, and technologies, and can provide a context for the section below on differences between military and commercial models of information security.

Also, the consulting firm of Ernst & Whinney included some of the same questions in a separate survey that was self-administered by attendees of the Computer Security Institute's 13th Annual Conference held in November 1986 in Atlanta, Georgia. A total of 562 completed questionnaires (a 12 percent response rate) were returned on site or by mail; 141 responses (25 percent) were from Government employees and the remainder came from a broad spectrum of business and industry. Of the respondents, another 18 percent were from manufacturing, 15 percent from financial services, 9 percent from insurance, and 8 percent from communications firms. Only 3 percent of the respondents identified themselves as from the defense industry. With Ernst & Whinney's permission, some of their survey data are used in this chapter, in addition to the OTA survey data.

Private Sector Motivations

Private industry and civilian agencies want information safeguards to:

- protect corporate proprietary or sensitive information from unauthorized disclosure or access and ensure the integrity of data and its processing;
- reduce losses from fraud and errors in electronic funds transfers and other financial transactions, limit associated increases in insurance premiums, and limit exposure to legal liabilities for preventable losses; and
- take advantage of new opportunities to reduce costs.

Box $E\xspace$ provides several indicators of increased private sector interest in electronic safeguards.

Protection of valuable corporate electronic information from disclosure (confidentiality) is important to many firms, but this need is not necessarily a firm's major concern for information security. The OTA survey found that the 26 respondents placed roughly equal importance on integrity, confidentiality, and

Ch. 5-Ireproving Iformation Security . 111

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 119 2002 reliability/continuity of service as components of their organization's information security, with integrity being rated slightly more important overall. The larger Ernst & Whinney survey found similar results, with both Government and nongovernment respondents rating integrity slightly higher than confidentiality and reliability/continuity. Interestingly, Government respondents rated confidentiality slightly higher than continuity of service, while the opposite was the case for nongovernment respondents.

Encryption or access control technologies can protect valuable proprietary information from disclosure, but they can also preserve its integrity and protect it from accidental or malicious modifications or deletions. This can be particularly important where large databases are a major revenue-producing asset. The regional Bell operating companies, for example, safeguard their on-line database for their Yellow Pages to preserve the integrity of the data and to prevent unauthorized use, not to prevent disclosure. In that sense, a recent news story reported that a disgruntled employee had attempted to rewrite parts of the 1988 edition of the Encyclopedia Britannica. The sabotage attempt failed, according to a company spokesman, because of safeguards that prevented unauthorized changes to the computer database.5

Most of the OTA survey respondents and almost 90 percent of the Ernst& Whinney survey respondents judged information security as being of 'fair' or 'extreme' importance to their organizations. Of the Ernst & Whinney respondents, Government respondents assigned slightly more importance overall to information security than did the nongovernment respondents.

All the OTA survey respondents noted an increase in the importance of data and information security to their firms over the past 2 years. About one-third reported "significant information or data security problems" during the past 2 years, mostly in the form of unauthorized access and loss of integrity (in one case, engineering data was destroyed). In only one instance was loss of confidentiality cited, resulting in invalid competitive bids—which may be an indication of the difficulty of detecting some misuses, rather than their absence. Only 2 percent of the information handled by these firms is classified for reasons of national security, according to respondents to the OTA survey.

The majority of Ernst & Whinney survey respondents considered that the security risks faced by their organizations have increased over the past 5 years, and about one-third of the business and one-fourth of the government respondents considered that these risks were not adequately met. Half of the respondents reported financial losses as a result of security problems or downtime, mostly under \$50,000, although a few losses were reported to be in excess of \$1 million (note that this question included losses due to downtime, which the OTA survey did not include). About onethird of the respondents reported non-financial losses, mostly in the form of unauthorized access by employees and hackers. For Government respondents, about 31 percent of the information mix handled by their organizations was classified for purposes of national security, versus only 4 percent for nongovernment respondents.

Reducing EFT Fraud and Other Losses.—U.S. banks transferred some \$167 trillion in 60 million separate transactions in 1984. The actual amount of wire transfer fraud experienced by banks is unknown. One estimate by the Bureau of Justice Statistics suggests aggregated electronic fund transfers (EFT) and automated teller machine (ATM) losses of \$70 million to \$100 million a year during the early 1980s, but a large fraction of this figure is due to ATM losses from fraud (by "con men," etc.) against the owners of the bank cards. Another Bureau

²¹⁻ Britzmark Sabotage Thwarted, "Washington Post. Sept. 6, 1986, p. D3.

of Justice Statistics report examined some 139 problem wire transfers. It found an average potential loss per transaction of \$800,000. although some potential losses were significantly larger.'

Similarly, an American Bar Association (ABA) survey of private and public sector organizations found that one-quarter (72) of those responding reported "known and verifiable losses due to computer crime in the last 12 months. Losses reported by respondents overall ranged from a few thousand dollars to more than \$100 million. Most losses reported by the (anonymous) respondents were less than \$100.000.

A large survey by the American Institute of Certified Public Accountants revealed that 2 percent (105) and 3 percent (40), respectively, of the banks and insurance companies surveyed had experienced at least 1 case of fraud related to electronic data processing (EDP). Most perpetrators were employees. More than 80 percent of the frauds involved amounts under \$100,000.'

The Department of Justice Bureau of Justice Statistics (BJS) recently examined the scope of EFT fraud, based on extrapolations from a limited sample of 16 banks. The BJS study suggested annual losses nationwide in the \$70-\$100 million range for automatic teller machine fraud. Twelve of the banks reported 139 wire transfer fraud incidents within the preceding five years, with an average exposure

to loss (before recovery efforts) of some \$880,000 per loss and an average net loss (af-ter recovery efforts) of about \$19,000 per incident.55

Whatever the actual amount of the losses, there is another indirect indicator that this is a serious problem: insurance premiums are rising for protection against fraud and other types of losses related to electronic transfers of funds.^{sc} During the past year, financial in-stitutions' motivations to safeguard valuebearing transactions-EFTs, letters of credit, and securities transfers-have been strengthened by actions of their insurers, some of which are raising premiums and/or requiring the use of message authentication methods approved by the American National Standards Institute (ANSI). As industry applies safeguards more widely and as the use of certified safeguards becomes more commonplace, expectations for responsible corporate behavior will be raised. A new standard, and perhaps a legal criterion, appears to be evolving for gauging responsible corporate behavior, or "due care, in businesses where firms are expected to provide reasonable safeguards for information whose loss could do significant harm.

The wholesale banking industry is leading this trend, prompted by liability and "due care' considerations, by the recommendations of internal and external auditors, and by Treasury Department policies. Treasury has issued policy directives requiring all Federal electronic fund transactions to be authenticated by June 1988. Dated August 16,1984, TD-81.80

⁻⁻See U.S. Congress, Office of Technology Assessment, "Ch. 5, Computer Crime," *Federal Greensment Information Tech-nology: Management, Security, and Oversight, OTA-C IT-297* (Washington, DC: U.S. Government Printing Office, February 1986), for an overview of the scope of computer-related crime and losses from electronic fund transfers and automated data recordering

and losses item electronic juin unistics and automates one processing. "Meport on Computer Crime, Task Force on Computer Crime, Section on Criminal Justice, ABA, 1984. "American Institute of Certified Public Accountants, EDP Fraud Review Task Force, Report on the Study of EDP-#2x+z* Fraud in the Banking and Insurance Industries, 1984.

Bureau of Justice Statistics Report NCJ-100461, Elec-tronic Fund Transfer Systems Fraud. April 1986. "The experience of a west coast bank llustrates the magni-tude of the changes in coverage being offered by Insurers for ET1 loss claims. Until recently, the bank's insurance coverage cost about \$1 million annually, and provided protection of up to \$50 million per electronic transfer claim, with a \$10 million deductible. The policy premium in mid-1 986 rose to \$5 million, with a \$10 million deductible, and an upper limit of \$100 mil-lion for total annual claims, *Issuree* OTA staff discussion with bank officials. May 1986. bank officials, May 1986.]

114 Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

specified that Federal EFT transactions be authenticated using measures based on DES and conforming to ANSI standards. This action is expected to have widespread effects throughout the banking industry because of the large number of systems and communications links that will use the system, and because some standards set by Treasury and the Federal Reserve System (which serves as the interface between Treasury and the wholesale banks) become defacto industry standards. As certified hardware for authentication becomes more widely used, economies of scale will lower prices for authentication hardware. As prices fall, additional end users are likely to adopt techniques and hardware to safeguard other business functions, creating a ripple effect throughout the private sector.

Thus, an early and important exception to the non-recertification of DES was made by NSA in the area of electronic fund transfers. Through a memorandum of understanding, the Treasury Department will certify commercial data security devices for securing fund transfers, with technical guidance and support from NSA and NBS. DES will remain the encryption algorithm for EFT transactions while authentication measures will be specified by ANSI standards adopted by the wholesale banking community." More recently, NSA agreed to support use of the DES for bank message authentication until an acceptable replacement became available. Widespread use of DES to authenticate electronic fund transfers will increase demand for DES-based hardware. That could lower its price and encourage its adoption for other applications in wholesale and retail banking and elsewhere. As an example of a retail banking application, the DES is used to encrypt customers' personal identification numbers in interbank automatic teller machine networks in the United States and Canada.¹⁸

A superseding Treasury Directive, TD-16.02 (dated October 2, 1986), extended the authentication requirement to securities transfers and stated that equipment designed and used to authenticate Federal EFTs must comply with Federal Standard 1027, which specifies security requirements to be satisfied in implementing DES (FIPS Pub. 46). Keying material used in DES authentication must be generated and processed in accordance with ANSI Standard X9.9. The broader requirement is expected to speed the dissemination of authentication techniques throughout the private sector.

A number of private financial institutions are taking aggressive steps to prevent certain types of misuse. Citibank, for instance, now has more than 4,000 encrypted links overseas. Similarly, the private Clearing House Inter-bank Payments System (CHIPS), whose \$240 billion in daily settlements is second in size only to the Federal Reserve System, uses ANSIapproved standards to authenticate its transactions."Large U.S. banks have also been among the most active participants in the development of technical standards through ANSI (see below).

Reducing Costs .-- Companies can also reduce the costs of routine business transactions by conducting them via computer-to-computer communications that make use of cryptographic-based authentication techniques. These inter-organization transactions use standardized formats for the electronic interchange of business data between independently organized, owned, and/or operated computer and communication systems. This is accomplished by each corporate participant assembling its transaction data in predefined sequences, called "transaction sets.

[&]quot;Memorandum of Understanding #EE2494:-014. Parts IV and V. This memorandum may be renewed in 1987, according to NBS staff.

[&]quot;Eddie Zeitler, Security Pacific National Bank and Nancy Floyd, Univergenature, Personal communications with OTA staff, Feb. 18, 1987.

[&]quot;Authentication in CHIPS, New York Clearing House, Jan.

^{17, 1985.} In 1986, CHIPS transactions amounted to \$125 trillion, com-In 1986, CHPS transactions amounted to \$125 truino, com-pared with \$124 trullion in domesit transactions handled by the FZI-W12E system. The FZI-W13Z system handles a greater volume of transactions than CHPS, and has many more on-line correspondents (7000 depository institutions compared to the 121 CHPS member banks). [Source: Florence Young, Division of Federal Bank Operations, Federal Reserve System. Personal communication with OTA staff, Feb. 13, 1987.]

Several industry-specific interchange standards have previously been developed, including transaction sets for air, motor, ocean, and rail transportation, as well as for public warehousing, and for the grocery industry. Development of an American National Standard for electronic data interchange is under way, intended to replace the many paper and specialpurpose business methods by 1988. One of the long-term goals of this standard is the realization of paperless trade transactions and transportation arrangements. Standards for this purpose are being developed by the ANSI X12 Committee, which was chartered in 1978. The first set of X12 standards for electronic business data interchange was approved by ANSI in 1983, and more were published in 1986.

The national standards are intended to be broad enough to encompass all forms of business transactions amenable to standardization, including inter-industry transactions. The electronic transactions, referred to as Electronic Data Interchange (ED I) or Electronic Business Data Interchange (EBDI), are intended to reduce business costs by speeding up the purchase order cycle, reducing the inventory buffers firms must carry, and streamlining cash flow. Dozens of common transactions will be integrated using these standards, including purchase orders, invoices, shipping notices, check payment vouchers, requests for quotations, and marketing information." These transactions amount to billions of dollars annually. An estimated \$38 million worth of them were handled electronically in 1985; by 1990, electronic business transactions are expected to amount to more than \$1 billion.61

These standards, or some compatible form of them, may also be adopted worldwide, thereby facilitating international transactions in different currencies. For this reason, any message authentication product, such as that

Ch. 5-Improving In formation Security .115

required for business data interchange will have to be eligible for use in other countries. The current ANSI authentication standard, based on the DES, is exportable, but its replacement may not be.

The original focus area for electronic data interchange was in transportation, beginning in 1968. The Transportation Data Coordinating Committee (TDCC) worked with representatives of the rail, motor, ocean, and air transport industries to develop EDI transaction sets for these modes. The first successful data interchange transmission occurred with railway bills, in 1975. Around the same time, TDCC organized a group of computer and communications experts to develop specific business applications of this type of electronic transaction. Among the outcomes of this group activity were the development of purchase order and invoice transaction sets and movement toward generic transaction sets for industry. In the early 1970s, large corporations, such as Sears, JC Penney, and K-Mart had started transmitting purchase orders electronically, with specialized formats. This was feasible in part because these retailers were often their suppliers' sole or largest customer. However, benefits due to improved transaction accuracy and timeliness accrued to both parties, increasing interest in electronic transactions.

Movement toward further development of generic transaction sets was formalized in 1978, when the ANSI X12 Committee was formed. TDCC and the Credit Research Foundation provided technical support to the new committee, and TDCC is the current X12 Secretariat. In 1979, the grocery industry began its industry-specific Uniform Communication Standard (UCS), which is compatible with the EDI architecture developed by TDCC for the transportation standards. Subsequently, standards for public warehousing applications (Warehouse Information Network Standards,

[&]quot;ee: Jack Shaw, "Electronic Business Data Interchange: A New Strategy for Transacting Business," *MSA Update, Man*agement Science America, Inc., March April 1988, Detroit Tries to Level at X-unten of Paperwork, "Justress Week, Aug. 26, 1985, pp. 94-96.

[&]quot;Management Information Systems Week, Jan. 20, 1996. Estimates provided by JackShaw at the ANSI ASCX12meet ing on June 9, 1986 are over \$3 billion by 1990.

[&]quot;Information on the evolution of electronic data interchange standards was provided by Paul Lemma, Transportation Data Coordinating Committee, ANSIX12 Secretariat. Personal Commun.721.5 n with 0114 staff. Learning 1987.

or WINS) were developed, also compatible with the EDI architecture. These standards include various security features.

The ANSI X12 Committee is developing generic standards for electronic business data interchange. In November 1986, industry representatives agreed on a common data dictionary for the ANSI X12 standards, the WINS and UCS standards, and the TDCC ED I stand-ard.[®] The ANSI X12 Security Structures Taskgroup is developing transaction security standards under the auspices of the X12 Finance Project Team, and the X 12 Committee has joined with the ANSI X9 Committee to deal with encryption and encryption-related business requirements. According to the X12 Secretariat, the latter include: electronic signatures ("telex signature"); data integrity, "hash controls" (digests); message authentication and sender verification; confidentiality of business data error detection; end-to-end security; and protection against replay, spoofing, modification, or impersonation.

Benefits from electronic transactions are expected to be substantial for diverse user groups, and some are already being realized. In 1980, a report prepared for the American Grocery Industry projected \$300 million in profits for the industry as a result of implementing standardized electronic transactions. The grocers' UCS standards were completed in 1981, and the resulting industry gains have reportedly exceeded the projections." The Automotive Industry Action Group, composed of the the major U.S. automobile manufacturers and about 300 of their largest suppliers, began their movement toward standardization of electronic business transactions in 1981. According to some estimates, General Motors and Ford expect to realize a \$200-per-car savings, or some \$1 billion a year, on a typical pro-

duction volume of 5 million cars per year, through use of electronic business data interchange." Caterpillar Tractor Co. has instituted an electronic transaction system linking some 400 sites.°

Because of the automobile industry's large number of suppliers, contractors, and distributors, their use of the new data interchange standards is expected to accelerate the spread of these standards to other industries. These include metals, plastics, and rubber, as well as chemicals, transportation, electronics, aerospace, banking, and retail sales." The movement toward electronic business transactions is giving rise to new, network-based "electronic clearinghouses' with market entrants such as IBM, GTE Telenet, GEISCO, Tymshare, and GM's Electronic Data Systems."

Potential savings to the Federal Government from electronic purchasing alone have been estimated to be \$20 billion/year or more. The DoD, for instance, has begun to use electronic data interchange to reduce the time required to get supplies to overseas commissaries, and expects to shorten immediately the 75-day purchase cycle by 5 or 6 days, thereby reducing inventory requirements. Other commissary and procurement paperwork-reduction projects have been under way within DoD for a few years.70

"Ford's estimate is from ' GEISCO Plans To Move Rock-⁴⁸Ford's estrinate is from 'EEISCQ Plans To Move Rock-ville Jobs in Bid to Get Edge in Clobal Markets, 'Washington Past, Sept. 29, 1986, Business Section, p. 4. The cost savings for GM is form a presentation by Jack Shaw at the ANSI X12 ASC meeting, June 9, 1986. This estimate does not include other potential savings from ED 1 facilitating just-in-time manufac-turing with reduced supply inventories. Star also reported that implementation of EDI enabled one large Eastern railroad to halve its purchasing data processing staff and is expected to cut another railroad's purchase order lead time from 10 days to 3, "Brain Greenstein. 'Caterpillar Erects Paperless Network, ' MIS Week, Jan. 20, 1986. "'Basinset Week, Op. ci., Aug. 26, 1985. "''GEISCO Plans...," Washington Post, op. cit., Sept. 29, 1986.

1986.

"Jack Shaw, ANSI X12 meeting on June 9, 1986. "Brad Bass, "Moving Data Electronically Expedites Sup-ply Delivery," Government Computer News, Jan. 30, 1987, p. 22.

Tablesebeth Horwitt, "Move to EDI Gathers Steam as Standards Clear, Benefits Grow," Computer World, Dec. 15,

Paul Lemme, TDCC. Personal communication with OTA staff, December 1986.

Linkages in and Contrasts Between Defense-Intelligence and Other Needs

Some Linkages Between Private Sector Activities and Federal Policy .- Private industry and civilian Government agencies' interest in safeguarding their computer and communications information are becoming intertwined with Government policies even though these interests are increasingly independent of national security. The linkages between private users and the Government, and between the civil agencies and NSA, tend to blur this independence. These linkages are especially influential where NSA's technical expertise or Government certification is important, or where Government agencies, as major purchasers, tend to drive commercial equipment designs.

Although NSA's technical knowledge in high quality cryptography and cryptanalysts is acknowledged to be the cornerstone of U.S. capabilities, very little of it is unclassified. Because of this, private users depend on NSA's willingness to provide information and advice, which currently takes place, in part, in the form of NSA-certified commercial products.

Understandably, private sector users place a high value on certified, validated, and standardized safeguard products. This dependence has required considerable involvement by NBS and NSA in the absence of private sector institutions fully competent to independently develop standards and certification processes. However, NSA's plans to replace DES in 1988 with hardware modules that use secret algorithms will tend to deepen and perpetuate private sector users' dependency on NSA expertise as long as these users have no independent alternative for developing a certified, nonsecret, and exportable successor to DES.

Government agencies represent a large market for some information security products, therefore their choice of standards has a significant influence on manufacturers. According to estimates from a study conducted by the Electronic Industries Association (E IA) in cooperation with NSA, Federal and private sector budgets for information security totaled Ch. 5-improving Information Security •117

some \$3 billion, split evenly between communications security and computer security.

Other important linkages between Government policies and the private sector, and between defense and civilian agencies, are in the areas of security awareness, education, and assistance. During the past few years, there has been mounting confusion concerning the distinction between the roles of NBS and NSA in these areas. In addition to its Federal standards development, NBS, under its authority in the Brooks Act, as amended, participates in the voluntary activities of standards organizations and works with the private sector and civilian agencies to develop computer and computer network safeguards techniques, including security components for the open system interconnection (OSI) architecture. However, NSA, under the auspices of NSDD-145, has expanded its relationships with civil agencies, providing threat assessments and awareness briefings and advice in selecting cost-effective and appropriate safeguards. NSA reports that it has provided assistance to 36 different civil agencies and departments, plus the U.S. Senate, for diverse application areas including trade and finance, drug interdiction, law enforcement, health, agriculture, immigration, and aviation and national security, "as well as to Government contractors and other firms."

1987. *Agencies and departments that have been assisted by SSA include the United States Trade Representative, International Trade Administration, Securities and Exchange Commission. Federal Reserve Board, Department of Labor, Naxional Nar-cotics Bordre Interdiction System, Immigration and Naturali-zation Service, Drug Enforcement Administration, Center for Disease Control, National Institutes of Health, Department of Agriculture, and Pederal Aviation Administration, Harold E. Baniek, Jr., NaS S-00(40-87, Feb. 20, 1987. Attachment 2 to Enclosure D. *Ubid, Attachment J to Enclosure D.

³Ibid., Attachment 1 to Enclosure D.

¹¹Of the \$1.5 billion budgeted for communications security in 1986, 66 percent was budgeted by DoD, about 7 percent by other Federal agencies, and 27 percent by the private sector fucluding delense firms]. Of the \$1.5 billion for computer secu-rity, however, DoD and other Federal agencies only accounted for 13 and 11 percent, respectively, while the private sector ac-counted for about 75 percent. Electronic Industries Associa-tion: COXSEC and COMPUSEC Market Study, "Jan. 14, 1987.

118 , Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

Vendors of safeguard technologies and private-sector defense contractors are also closely linked to Federal information security policies and programs, such as NSDD-145. Because the new, NSA-certified encryption modules are expected to have a large, stable market among Federal agencies, vendors are unlikely to attempt development of riskier, uncertified, encryption-based safeguards. Private sector users, therefore, may be faced with limited new options if the supply of encryptionbased safeguards is determined by "technol-ogy push" (from NSA) rather than "demand pull" (from unconstrained market forces).

Emerging Differences.-What is open to question is the extent to which the concerns, priorities, and needs of the defense- and national security-oriented user communities are generalizable to civilian agencies and the bulk of the private sector.

One interesting set of findings from the OTA and Ernst & Whinney surveys, "mentioned earlier, is based on the respondents' perceptions of who their organizations' adversaries are and illustrates an important difference between perceived Government and private sector information security needs: who the most significant adversaries are, and what level of resources they possess. Table 7 summarizes responses to a question in each survey that asked respondents to rank categories of adversaries according to how relatively important it is to protect their organizations' significant (unclassified) "company confidential" or proprietary information from them. For example, the group of 26 nongovernment individuals

Table 7.-Overall Ranking of Importance as an Adversary (Highest = 7)

	OTA survey responses"			
Category of adversary	Mean ranking of category	Fraction of responses ranking category #I or #2		
Your competition	. 6.7	920/,		
Some of your internal				
employees	4.8	31		
Foreign governments	3.1	4		
Your suppliers	4.1	15		
Your customers	4.9	27		
Public interest groups		19		

aAfi respondents were BOD, DOVERIMENT

		Whinney survey nment responses
Category of adversary	Mean ranking of category	Fraction of responses ranking category #1 or #2
Your competition Some of your internal	6.5	. 89%,
employees	4.9	43
Foreign governments	3.9	30
Your suppliers	4.1	11
Your customers	4.7	35
Public interest groups	3.9	15
^b Ectween 203 MCouto' a total of 421	non-government	respondents ranked each

egory of adversary, the rest did not ratik that category

	Ernst & Whinney survey Government responses			
Category of adversary	Mean ranking of category	Fraction of responses ranking category #1 or #2		
Your competition	'4.1	35 %		
Some of your internal				
employees	5,3	53		
Foreign governments	6.1	74		
Your suppliers	4,3	24		
Your customers	4.5	34		
Public interest groups		48		
Glean an 26-fit out of a total of 14		rescondents canked each		

ategory of adversary the remainder did not rank that category

surveyed for OTA, predominantly nondefense Fortune 100 executives, rated foreign governments as their least important adversary.

Similarly, the larger sample of non-Government respondents surveyed by Ernst & Whinney ranked foreign government adversaries lowest overall. Instead, both non-Gov-

** One of the OTA survey respondents noted that his firm was most concerned with protecting information from foreign governments; another was concerned with protecting confiden-tial customer information from the U.S. Government.

⁵⁷The OTA computer security survey was conducted in Oc-tober 1986,at a meeting of Palmer Associates. The 26 respond-ents to the questionnaire were data processing audit divec-presidents and data processing audit divectors of Fortune 500 companies. Ernst & Whinney, "OTA Computer Security Sur-vey, "OTA contractor report, Nov. 7, 1986. Ernst & Whinney conducted a separate survey in November 1986 at the 13th annual conference of the Computer Security Institute. About 500 attendess responded to this self-admin-istered survey, most of whom had responsibility for computer security functions. The data were mede available to OTA in February 1987.

ernment groups considered their competition as the most important single adversary, followed by customers and some internal employees, and then by suppliers, public interest groups, and foreign governments. The Government respondents surveyed by Ernst& Whinney considered foreign governments (perhaps analogous to "your competition' for businesses) to be the most important adversary, followed by some internal employees, public interest groups, and the other categories. An important difference between business competitors and foreign government adversaries is, obviously, the level of resources that each type could deploy to gain access to information.

The Electronic Industries Association market study mentioned earlier also found 'widely different perceptions of the threat to information systems and this results in different and often conflicting and competing security requirements ... The study notes a national security perspective that focuses on external threats while others' perceptions are of internal sources as the principal threat.¹⁶ It also notes that businesses and civilian agencies attached considerable importance to the cost of safeguards and their effect on operations.

Other differences (and similarities) between current Government and private sector information security priorities are suggested by a survey question asking respondents to list their organizations' "top-priority" computersecurity and information-security concerns. These responses are summarized in table 8. Although the same types of concerns are mentioned by Government and private sector respondents, their relative priorities are different.

An important effect of these perceptions and priorities is on the users' decisions concerning the use and choice of safeguards.

Another interesting finding from both the OTA and Ernst & Whinney surveys was the

Ch. 5-Improving Information Security .119

relatively low level of perceived impact (as of Fall 1986) from NSDD-145 on non-Government organizations safeguarding of unclassified information. Table 9 summarizes responses to a survey question about the impacts of NSDD-145. Almost three-quarters of the respondents (all non-Government) to the OTA survey and almost half of the non-Government Ernst & Whinney survey respondents felt that NSDD-145 had had no impact on their organizations' safeguarding of unclassified information. Moreover, fewer than 10 percent of the respondents to the OTA survey and fewer than 30 percent of the non-Government respondents to the Ernst& Whinney survey considered that the directive had impacted their firms' security practices for unclassified information 'somewhat" or "greatly. "By contrast, the Government respondents in the Ernst a Whinney survey reported much higher levels of impact overall, with only one-quarter reporting no impact from NSDD-145 on unclassified information security and almost 60 percent reporting that the directive had impacted their organizations' unclassified information security at least somewhat.

More than two-thirds of both the OTA survey respondents and the non-Government re-spondents to the Ernst & Whinney survey felt that their firms' information and data security measures were at least fairly adequate to meet their needs. What is somewhat surprising is the relatively low percentages of these firms' total information and computer security expertise attributed to Government-sponsored assistance programs, conferences, and training programs. Only 2 of the 26 OTA survev respondents indicated that even a small percentage of their firms' information and data security expertise came directly from Government assistance programs. This low percentage is likely due to the composition of the Palmer Associates group surveyed and is in marked contrast to what one might expect

³⁴Electronic Industries Association, "COMERC AND COM-PUSEC Marke: Study, '(Jan. 14, 1987, This study was based on 75 interviews, 64 of which were with Federal agencies, incloding 39 having defense and intelligence missions.

⁻⁷Twofirms in the OTA survey indicated that they had implemented encryption or scrambling to protect sensitive communications in response to N SD II- 145, and one of these firms also implemented access control soft ware, passwords, and arquired special communications channels.

120 . Defending Secrets, Sharing Data: New Locks and Keys for Electronic Information

Table 8.--- Top-Priority Computer and Information Security Concerns Mentioned by Respondents

OTA survey group (non-government)	Ernst & Whinney non-government group	Emst & Whinney Government group
Data security/data integrity	Network security	Contingency planning/disaster recovery
Network security	Data/information classification and security	Data/information classification and security
Contingency planning; training	Micro/PC security	Network security
Quality security throughout firm; telecommunications links; internal	Dial-up security/communications	Micro/PC security

hacking SOURCE Data from surveys conducted by Ernst & Withmay In October and November 1986

Table 9.-Perceived Impacts From NSDD-145 (Fall 1986)

	ember 17, 1984, President Reagan signed National Security Decision Directive
145 (N	SDD-145), the National Policy on Telecommunications and Automated infor-
mation 5	Systems Security. This policy has led to much more active involvement by
the Nati	onal Security Agency and the National Computer Security Center in provid-
ing advid	ce to business and industry. How has NSDD-145 impacted your organization
in safeg	uarding information that is not classified for purposes of national security?"
-	Survey responses

		Ourvey re.	sponses	
Response	OTA survey total responses to question (all non-government) (23)	Ernst & Whinney total responses to question (486)	Ernst & Whinney non-government responses (364)	Ernst & Whinney government responses (122)
Not at all	74 */0	41 70	46%	25%
Very little		25	27	18
Somewhat		24	21	33
Greatly	0	11	6	24

SOURCE Data from surveys conducted by Ernst & Whinney In October and November 1986

from an alternative group composed of defense contractors, computer firms, or firms producing security products for the Government market. In fact, only two of the respondents to the OTA survey indicated awareness of any specific Government-sponsored information and assistance programs. Of the 22 individuals responding to a question concerning their perceptions of the helpfulness of Government guidelines, 17 answered "not at all, " while 5 said these had been "somewhat" helpful to their organizations. The respondents who did find Government guidelines helpful cited the NBS Federal Information Processing Standards (FIPS), including DES, as well as guidelines for protecting privacy-related and classified information.

Differences Between Military and Civilian Computer Security Models.-The debate about how well the NSA's Orange Book computer security standards and evaluated products program will serve the needs of civilian agencies and private businesses is receiving increased attention within the computer security community. One of the most crucial aspects of the debate concerns the security policy underlying the Orange Book criteria, the mechanisms needed to enforce security policies (and associated mechanisms) that are common in commercial practice. According to computer security experts at NSA, for example, the National Computer Security Center (NCSC) has worked —and continues to work—"hand in glove" with the civilian agencies to understand their needs and provide appropriate computer security solutions⁴⁴ and, moreover, products that have been evaluated by NSA and that have received

^{**}Harold E. Daniels. Jr., NSA S-0033-87, Feb. 12, 1987, p. 7 of Enclosure 2.

B- and C-level ratings are being used in the private sector (some of these, such as RACF, ACF2, and Top Secret, were developed well before the Orange Book was published but have been modified to meet Orange Book standards). Other experts disagree with this position, and argue that the security policy and mechanisms specified in the Orange Book do not meet important needs in commercial data processing.

Among the latter group are David D. Clark (MIT Laboratory for Computer Science) and David R. Wilson (Ernst & Whinney). In their paper, "A Comparison of Commercial and Military Computer Security Policies, "^b they present a security model based on commercial data processing practices and compare the mechanisms needed to enforce this model's rules with those needed to enforce the (lattice) model of security embodied in the NSA criteria. Other experts have also offered criticisms of the Orange Book's applicability to business needs. However, a brief summary of the Clark and Wilson paper, offered here as an example, points out some of the main points of criticism.

According to Clark and Wilson, the "military" (NSA/DoD) security policy is really a set of policies designed to control classified information from unauthorized disclosure or declassification. Mechanisms used to enforce this security policy include mandatory labeling of documents or data items, assigning of user access categories based on security clearances, generating audit information, etc. The higherlevel security policies include mandatory checks on all read and write transactions; these mandatory controls constrain the user so that any action taken is consistent with the security policy. In addition to these mandatory controls, discretionary controls can be used to further restrict data accessibility (e.g., "need to know" controls), but, say Clark and Wilson, these cannot increase the scope of security controls in a manner inconsistent with the underlying multi-level classification concept.

Ch. 5---improving Iformation Security . 121

By contrast, Clark and Wilson assert that what underlies commercial data processing security practices is the prevention of fraud and error and, therefore, that a "commercial" security policy should address integrity rather than disclosure. Some of the mechanisms to enforce this type of policy are common with those for the military model (for example, user authentication), while others are very different. Among these others, Clark and Wilson identify two principal mechanisms: the wellformed transaction (in which a user can manipulate or record data in constrained ways that preserve or ensure the integrity of the data-analogous to a paper-and-ink accounts book in which correction entries, rather than erasures, are made); and separation of duty among employees (in which the user permitted to create or certify a well-formed transaction may not be permitted to execute it-analogous to double-entry bookkeeping in which a check for payment must be balanced against a matching entry in the accounts-payable column). Separation of duty is a fundamental principle of commercial data integrity control, and is considered effective except in the case of collusion among employees.

In their paper, Clark and Wilson conclude that the integrity mechanisms inherent in the commercial security model differ from the mandatory controls in the military (nondisclosure) security model in important ways, and controls based on the military model are not sufficient to enforce the commercial (integrity) model. They then introduce a more formal model for data integrity in computer systems, based on the use of constrained data items and transformation procedures for enforcing an integrity policy. Comparing this model with other integrity models, Clark and Wilson argue that their model, unlike the Orange Book standard, is applicable to a wide range of integrity policies.

By early 1987, debate on the general applicability of the Orange Book criteria and development of alternative models of computer and information security had developed to the extent that plans were made for an invitational Workshop on Integrity Policy for Computer

^{**}David D. Clark and David R. Wilson, "Commercial Security Policies," *Proceedings, 1987 IEEE Symposium on Secu*rity and Privecy. Oakland, CA, Apr. 27-29, 1987.

Information Systems, organized by Ernst & Whinney and cosponsored by the Institute for Electrical and Electronic Engineers, the Association for Computing Machinery, NBS, and NSA's National Computer Security Center (NCSC), to address military versus commercial security policy issues. The workshop is scheduled to be held in late 1987.

Civilian Agency Actions.-In addition to the NBS activities described earlier, related to DES, FIPS publications, and voluntary standards development, there are other civilian agency activities related to safeguarding electronic information. (An earlier OTA report surveys civilian agency programs for computer security.)81 The Treasury Department, for example, requires the use of safeguards for information systems that handle sensitive, as well as classified, information.⁸² All Federal electronic fund and securities transfer systems must also have safeguards in place by June 1988. The requirement applies to all Federal agencies (except DoD, which has its own policy) and to wholesale banks that do business with Treasury and use the Federal Reserve System as the interface." The Treasury Department Order (TO 106-09) requires that authentication measures conform to the American National Standard Institute (ANSI) X9.9 standard "or equivalent authentication technique. "8' According to Department of Treasury officials, the DES "is and will remain fundamental to the Department's security strategy for the foreseeable future. "*" Treasury has announced that technology to secure Federal electronic fund transfers (EFTs) must be compatible with systems used by the Federal Reserve System and the commercial banking community. Specifically:

- Treasury will continue to support and implement ANSI financial standards as the common method for securing Federal EFTs and will only transition from the current (DES based) ANSI standards to any new ANSI standard (not based on DES) if the transition is based on "sound business decisions and security needs.
- · Treasury will rely on NSA's commitment, of November 12, 1985, that DES will be supported indefinitely for the financial community.
- Treasury will rely on NBS to continue to validate DES chips.
- · Treasury will continue to certify equipment and techniques for Federal use to provide authentication/encryption and automated key management for EFTs. Treasury will continue to develop, in conjunction with NBS, automated test beds/bulletin boards so that NBS can validate successful hardware and software implementations of ANSI financial standards.*

The Federal Reserve System publicly expressed its commitment to electronic data security in early 1985, when it announced specific plans to enhance its electronic payment services in order to increase their security. The Federal Reserve is a highly-visible participant in the Nation's electronic payments system, both as an operator (performing electronic fund and securities transactions, serving as an automated clearinghouse, etc.) and as a regulator. In its role as an operator, the Federal Reserve must protect its value transactions; as a regulator, the Federal Reserve intends that its security and reliability standards serve as models for depository institutions to emulate in securing their own electronic payments operations.

[&]quot;Information on workshop from David Wilson and Jenny Sobraky (Ernst& Wilangs), private communications with 07A staff May 5-6, 1987, and from an IEEE press release (May 1987), "ICT ACT:1297, op. cit. "Department of th, Ireasury, Directives Manual, Informa-

tion Systems Security, Ch. TD 81, Section 40, Apr. 2, 1985. "Department of th, Treasury, Directives Manual, Elec ⁴⁴ Dynamic Sci df 1 Treasury, Directives 'Miniad, 'Elic tronic Funds and Transfer Policy-Message Authentication, ID 81, Section 80, Aug. 16, 1984. Superseded by: Department of the Treasury, 'Electronic Funds and Securities Transfer Policy-Message Authentication and Endorsed Security, ' T331640, Oct. 2, 1986, 'TD-1642 is authorized by Treasury Order 106-04, Oct. 2, 1986, ''D-1642 is authorized by Treasury Order 106-04, Oct. 2, 1986, ''D-1642 is authorized by Treasury Order 106-04, Oct. 2, 1986, ''D-1642 is authorized by Treasury Order 106-04, Oct. 2, 1986, ''D-1642 is authorized by Treasury Order 106-04, Treasury, Order #106-09, 'Electronic ''Degatreen of II, Treasury, Order #106-09, 'Electronic ''J. Martin Ferris, Security Programs, Department of the Treasury, Washington, DC, letter to OTA staff, Dec. 16, 1986.

[&]quot;Ibid.

Ch. 5-improving Iformation Security •123

The Federal Reserve's plans include encryption of depository-institution connections; as of late 1986, over 60 percent of these were encrypted and the Federal Reserve plans to have almost 100 percent of them encrypted by the end of 1987. In addition, the Federal Reserve is currently testing the use of message authentication within the Federal Reserve environment." The National Bureau of Standards is providing technical support to the Federal Reserve.

Technical Standards Development

Technical standards are important for a number of reasons. Among other things, they help to aggregate markets by improving the uniformity, interoperability, and compatibility of vendors' products.

Federal Agency Participation .- NSA and NBS activities in the development of standards have been noted earlier. Other agencies involved in the development and promulgation of regulations and standards include the Office of Management and Budget, the General Services Administration (GSA) and DoD's National Communications System (NCS). GSA promulgates Federal procurement regulations generally, including telecommunications, and has delegated its responsibilities for producing and coordinating communications stand-ards to NCS, which has issued DES-related standards for telecommunications security and interoperability.

NBS has had considerable success during the past decade in developing a variety of standards for information security, as well as by publishing dozens of guidelines. Known as Federal Information Processing Standards (FIPS), NBS standards apply to civilian agencies. Several have also become the basis for standards developed or adopted by NSA and by private standards-setting organizations such as ANSI, the ABA, and the International Organization for Standardization (ISO).

One of the earliest of these national standards, DES, (FIPS 46, released in 1977) is dis-cussed in appendix C. DES, which is now produced in hardware and software both in the United States and overseas,"* has been adopted by ANSI in a number of its technical standards, and was considered for use as an international standard by an ISO technical committee in 1986, as discussed later.

Private Sector Participation. -Active participation in the development of technical standards for information safeguards is another indication of the current and future needs of business users. ANSI has had active participation from several dozen major corporations, including banks, equipment vendors, and (more recently) other manufacturers. For example, several large U.S. banks and the American Bankers Association (ABA), the Canadian Bankers Association, and about 30 vendors are among the participants in developing standards of interest to the banking community, in addition to NBS, the Treasury Department, and NSA. Suppliers and users of sophisticated safeguards such as biometrics and other technologies not based on cryptography have acted more independently of the Federal Government, sometimes in the absence of technical standards. Defense agencies are major consumers of these products, but the Federal Government does not enjoy the near monopoly in technical expertise that it has in cryptography. In the area of biometrics, the International Biometric Association was formed in 1986 to address industry issues, including establishing a testing and standards program.

Most large corporations have developed or are developing their own information safeguard policies. For example, the Chemical Bank of New York, which has more than 250 branches, has developed its own policies and a security training program for bank employees." The bank's policies, published in 1985,

⁵⁷Jack Dennis, Assistant Director of Federal Reserve Bank Operations, Washington, D.C. Personal communication with OTA staff, Aug. 26, 1986 and letter, Dec. 17, 1987.

^{*}Fodard Government certification applies only to implemen-tations of DES in electronic devices. *** Corporate Data Security Standards, * Chemical Bank (Chemical New York Corp.), 1985; also Presentation by Joan Reynolds (Chemical Bank), panelist in 'Guidelines and Stand-ards Panel, * Ninth National Computer Security Conference, Gaithersburg, MD, Sept. 16, 1986.

124 • Defending Secrets, Sharing Data; New Locks and Keys for Electronic Iformation

define security and custodianship responsibilities in the bank's distributed operating environment and govern the transfer of information in hard copy and electronic forms to protect the bank's information service and data assets. The bank has developed a software package that it uses to train branch officers to perform risk assessments for their local offices and to implement the corporate security standards. By late 1986, the software package had been used in at least 30 Chemical Bank locations.

The Small Business Computer Security and Education Act (Public Law 98-362) provided another mechanism for private sector partici-pation in developing information security standards and guidelines. Passed in July 1984, the act set up a 10-member Small Business Computer Security Advisory Council to advise small businesses on the vulnerabilities to misuse of computer technologies (especially in distributed network environments) and on the effectiveness of technological and management techniques to reduce these vulnerabilities. It also develops guidelines and information to assist small businesses and plans to distribute written materials, including a small business guide to computer security (to be published by NBS) in mid-1987.3 A report to Congress will be issued by December 1987.

The Applied Information Technologies Research Center (AITRC) represents yet another private sector approach to meeting information safeguard needs. A consortium of scientific, technological, and business organizations based in Columbus, Ohio, AITRC is part of this State-supported program. It was supported by an initial State grant of \$1.4 million. Its industrial members include leaders in online information services, and one AITRC project is developing techniques for secure access to private and subscription databases. In the fall of 1986. AITRC was licensing a lowcost, credit card device for remote user identification

Technical Standards Bodies.—Another indication of the variety of users' needs and demands is provided by the activities of the technical standards-making bodies. Users and vendors in the banking and information processing communities, and in civilian Government agencies, have been working with considerable success for the past decade to develop standards to meet their needs for improved information safeguards. These groups recognize that standards establish common levels of cryptographic-based security and interoperability for communications and data storage systems.³⁹

The leading information standards-making organizations in the United States have been the Institute for Computer Sciences and Technology at NBS, the American National Standards Institute (ANSI), and the American Bankers Association (ABA), as noted earlier. The International Organization for Standardization (ISO), develops voluntary standards for international use. Through these bodies, users and vendors are setting the stage for improving the integrity and security of computer and communications systems world-wide.

The American National Standards Institute (ANSI) serves as a national coordinator and clearinghouse for information on U.S. and international standards. It is the central nongovernment institution in the United States for developing computer, communications, and other technical standards for industry. ANSI

^{**}Personal communication between OTA staff and Denise Ulmer, Chemical Bank of New York, Sept. 25, 1986. The software package, RiskPar*, 'is also being marketed commercially through Chemical Bank Information Products and Prolile Analysis Corporation, Ridgefield, Connecticut, Personal communication between OTA staff and Peter S. Brown, Pro-file Analysis Corp., Spr. 25, J9867. S. Brown, Chaircana, Small • Information payoided by Peter S. Brown, Chaircana, Small Business Computer Security Advisory Council, Sept. 25,1986.

Sources: Information Hottine, July-August 1986, pp. 6-7; and personal communication between OTA staff and Richard Bowers, ATRCS. Ept. 8, 1961, egritty and Security Stand-ards Based on Cryptography, North Holland Publishing Co., Computers & Security 1 (1982) CAS00043 [KC]. Also, see Orga-nization for Economic and Cooperative Development, Commi-tee for Information, Computers, and Communications Policy, 'Standards and Standard-Setting in Information Reinology States, Strategies, and International Implications, Sept. 5, 1985 1985

members represent a broad range of industries and technical disciplines. NBS is a member of many ANSI committees, including those dealing with message authentication and encryption; other Federal agencies including Treasury and NSA also have memberships. ANSI serves as the U.S. representative to the International Organization for Standardization (ISO).

These organizations are structured internally into committees, technical committees, and working groups to accommodate the special interests of their members and to provide a narrow focus, where needed, for developing particular standards and guidelines. Among the structures related to information security are:

- . ANSI X3 (Information Processing Systems) Committee, which includes the encryption technical committee; and ANSI X9 (Financial Services) Committee, which includes the financial institution message authentication working group, the financial institution key management committee, and the bank card security working group (focusing on personal identification number, management, and security);
- Ž ABA, which focuses on financial transactions safeguards, including encryption and message authentication; and
- ISO's Technical Committee 97 (TC-97) and its various subcommittees and working groups, which are responsible for developing standards for information processing systems; and Technical Committee 68, which has similar responsibilities for the financial community.

These bodies make extensive use of one another's work, often adopting the other's standard intact or with modifications. Table 10 shows the progress being made in the development of standards and guidelines, as well as many of the contributions of different civilian institutions.

The interests of many developed countries in establishing an international standard for cryptography have recently culminated more than 5 years of deliberation in the ISO. In December 1985, an ISO technical subcommittee recommended that DES be adopted as an international standard.'}" Any standard adopted by the ISO would likely be used throughout much of the developed world to safeguard communication and computer systems. Disagreements within the U.S. delegation (between NSA and the business community members of ANSI) led the U.S. delegation to abstain during the ISO vote on DES." ANSI, in mid-1986, recommended to ISO that cryptographic algorithms not be the subject of international standardization. This change from ANSI's previous position probably came in response to NSA suggestions." Several months later, the ISO Technical Committee TC97 announced the withdrawal of the proposed DE A-1 standard."

Some of the other nations involved in the ISO deliberations have proposed their own algorithms as alternatives to DES." This proposal may give credence to what many believe, i.e., that not only can other nations offer encryption algorithms for international use, but that future encryption services will be decided based on international commercial needs. The

* Vincent McClellan, "The Pentagon Couldn't Defeat IBM in Battle Over DES Standard, "Information It reek, Feb. 24, 1986, pp. 24-27. "Ibid., pp. 24-27,

¹⁶'bitai, pp. 24-27, "During a meeting with NSA officials in June 1986, OTA staff were advised that since most private sector foreign repre-sentatives to the 1 SO have close ties with their governments, the final 1SO decision on whether te adopt the DES could be decided prior to 1 SO voting through private negotiations among governments. Furthermore, NSA officials have stated that NSA is not in favor of DES (or any one algorithm) being used as an international encryption standard. Harold F. Daniela, Jr., NSA 5-0033-87, Feb. 12, 1987, p. 2 of Enclosure 2. Critics of NSA are sometimes inconsistent. For example, there

5-0033-87, Feb. 12, 1987, p. 2 of Enclosure 2. Critics of NSA are sometimes inconsistent. For example, there was speculation that the real reason that NSA opposes DES, or any other algorithm, as an international standard is that it would damage NSA's signals intelligence operations or benefit criminal elements. On the other hand, others speculate that DES is easy for a government intelligence agency to decipher. However, according to one NSA executive, three is no evi-dence that anyone has yet found a way to break the DES. But, because DES has come into such widespread use, it may be-come an attractive target for just such attempts. Of A staff meeting with Harold E. Daniels Jr., NSA, Aug. 13, 1986. "Vincent McClellan, The Pentagon Couldin Defecta IBM in Battle Over DES Standard, *Information Week*, Feb. 24, 1966, pp. 24-27.

op. 24-27. "lbid.

126 . Defending Secrets, Sharing Data.' New Locks and Keys for Electronic Information

Standard/guideline	Developer/year	Principal and other users/uses
Data Encryption Standard (DES) (FIPS PUB 46)	NBS (1977)	U.S. Government (computer and communication security); increasing use in private sector
DES Modes of Operation (FIPS PUB 81)	NBS (1980)	U.S. Government (key management, character transmission, packet transmission, volce)
Key Notarization System (U.S. patent 4,386,233)	NBS (1980)	U.S. Government (notarized identification of originator and receiver of secure message or data file); also used in banks
Guidelines for Implementing the DES (FIPS PUB 74)	NBS (1981)	U.S. Government (general DES user information)
Computer Data Authentication (FIPS PUB 113)	NBS (1985)	U.S. Government (authentication code for data integrity in ADP systems and networks); some use in private sector
Password Usage Standard (FIPS-112)	NBS (1985)	U.S. Government (identifies ten security factors for a password system)
General Security Requirements for Equipment Using DES (FS-1027)	GSA (1982)	U.S. Government (physical and electrical security of DES devices)
Interoperability and Security Requirements of the DES in the Physical Layer of Data Communications (FS-1026)	GSA (1983)	U.S. Government
Data Encryption Algorithm (DEA)	ANSI X3.92 (1981)	U.S. industry (voluntary standard, DEA is ANSI terminology for the DES)
Data Link Encryption Standard	ANSI X3.105 (1983)	U.S. industry
DEA Modes of Operation	ANSI X3.106 (1983)	U.S industry
Financial Institution Message Authentication (wholesale)	ANSI X9.9 (1983)	Wholesale banks (message authentication); industry (electronic procurement message authentication)
Personal Identification Number (PIN) Management and Security	ANSI X9.8 (1982)	Retail banks (DEA encryption of PINs; retailers (computer access control)
Financial Institution Key Management	ANSI X9.17 (1985)	Wholesale banks and industry (cryptographic keys for encryption and message authentication)
Financial Institution Message Authentication (Retail)	ANSI X9.19 (1986)	Retail banks (message authentication using DEA)
Financial Institution Encryption of Wholesale Financial Messages	ANSI X9.23 (draft)	Wholesale banks and industry
Management and Use of PINs	ABA (1979)	Banks (general guidance)
Protection of PINs in Interchange	ABA (1979)	Banks (general guidance)
Key Management Standard Dec. 43	ABA (1980)	Banks (general guidance)
Data Encryption Algorithm (DEA-1)	ISO (1986)	Proposed international version of DES (FIPS-46); withdrawn by ISO Technical Committee TC97.
Modes of Operation of DEA-1	ISO/DIS 8372	Draft international standard has been approved (title may change due to withdrawal of proposed DEA-1 standard)
Data Link Enciphering Standard	ISO/DIS 9160	Draft international standard, version of ANSI X9,105
Message Authentication	ISO/DIS 8730	Draft international standard for message authentication; Part 1 specifies the DEA-1 algorithm, Part 2 specifies the MAA algorithm
Public Key Encryption Algorithm and Systems	ISO/DP 9307	Draft proposal for standards (may be stricken)
Banking: Key Management (wholesale)	ISO/DIS 8732	Draft international standard for wholesale banks

Table 10.—Selected Civilian Technical Standards for Safeguarding Information Systems

SOURCE Of fice of Technology Assessment, 1987

trend toward the standardization of encryption-based safeguards, principally for improving message integrity (virtually all of which are currently based on DES, often in conjunction with public-key cryptography) suggests that within a few years major segments of the world's businesses will have standardized information safeguards where needed.

Second, these trends indicate that the role of the U.S. Government is shifting from that of the principal developer of safeguard standards in the early 1970s to a more limited role of one participant among many, although with continuing and important responsibilities.

Inherent Diversity of User Needs

Decisions on arcane technical standards, originally based on national security concerns, have already begun to be influenced by various, growing nondefense interests in the United States and worldwide. If safeguard products meeting Federal standards for certification do not fully meet commercial needs, then users are likely to seek greater independence from the Federal Government. Some movement in this direction is already taking place, as evidenced by: unpublicized plans in 1987 of the U.S. banking community to bypass NSA's secret algorithms; growing commercial interest in proprietary public-key al-gorithms, which have no Federal standard but meet users needs for electronic key distribution and digital signatures; and, the workshop on Integrity Policy for Computer Information Systems, planned for late 1987, which will focus on military v. commercial security models.

The foregoing description of various users' needs, and actions that Government and private sector groups have undertaken to meet them, serves to point out the inherent diversity and heterogeneity of users' needs for information safeguards. Within the Federal Government itself, for example, different requirements exist among defense and civilian agencies, and even between classified and unclassified applications (such as food service or routine procurement) within DoD. The private sector is no more uniform in its needs, attitudes, and perceptions. In order to understand the differences in each user's requirements, priorities, and perceived risks and threats, information such as the following must be evaluated by each user:

- What are the user's major concerns? For example, what is the relative priority for various types of information for integrity versus confidentiality, versus reliability and continuity of service?
- What sensitive information may warrant better safeguards than are now provided?
- Who are the adversaries that need to be protected against (employees, competitors, foreign governments) and the resources they are likely to use?
- What are the likely consequences (financial, embarrassment, privacy) of different types of losses? What has been the loss experience to date?
- What are the decision criteria (costs and benefits for bolstering safeguards, required by law, risk aversion)?

Responses to these and other questions help to define the user's needs for safeguards and are likely to be different from one user to another, even when they are in the same general business. A defense contractor bound by DoD policies and regulations for safeguarding classified information from foreign adversaries, for example, can recover the costs of safeguards from the Government. This is a very different situation than that of a large retailer who needs to authenticate thousands of transactions per day, with emphasis on service delivery, costs, data integrity, and protection against dishonest employees and customers. And, the retailer's needs bear little resemblance to the bank manager's requirement to show that he has exercised due care in safeguarding the bank's assets.

Chapter 6 focuses on some of the major laws and policy directives concerning information security. In tracing the development of public policy, it seeks to provide insights into the question: "How did we get where we are today?"

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 136 2002

.

Chapter 6 Major Trends in Policy Development

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 138 2002

CONTENTS

	Page
Findings	.131
Introduction	.131
The Evolution of Federal Policy for Safeguarding Unclassified	
Information in Communications and Computer Systems	.135
Executive Branch Activities in Information Security	.135
Computer Security	.136
Communications Security	
Definition of Sensitive Information	
Policy Development in Congress	140
Government Controls on Unclassified Information	141
Controls Through Legislation	.141
Executive Branch Directives and Other Restrictions	.143
The Environment for Policy Development	145
The Early Environment	.145
The Changing Environment and Federal Policies	.145
The Current and Future Environment	146
Current Congressional Interest	.147

.

Tables

Т

Table No.	Page
11. Selected Government Policies Related to Controls on Information	
Flows: A Context for Electronic Information Security,	.132
12. Government Actions Affecting the Security of Information in	
Computer and Communications Systems	.134
13. Committees Guiding the Implementation of NSDD 145	

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 140 2002

Major Trends in Policy Development

FINDINGS

- Federal policy limiting the disclosure of information has expanded over the last decade to include growing concern for protecting unclassified, but sensitive information, such as that in commercial and Government databases. As part of this process, the role of the defense and intelligence communities has also expanded and "national security," as a criteria for non-disclosure, is being interpreted more broadly.
- Federal policies on information security are creating tensions with broad national interests and, in contrast with earlier times, can no longer be isolated from them.
- Most recent Federal policies on information security are based principally on national security concerns. Now that information security is becoming important to commerce, more broadly based policies will be more appropriate.
- The National Security Agency (NSA), in carrying out its role under National Security Decision Directive (NSDD-145) to develop computer and communications security standards for use by Government and industry, is involved in two policy conflicts. One conflict involves responsibilities for developing security standards, with the National Bureau of Standards (NBS) charged by the Brooks Act of 1965, as amended, and NSA having overlapping responsibilities under NSDD-145. The second is a continuing, inherent conflict between NSA's mission to perform signals intelligence and its efforts to develop computer and communications safeguards for widespread nondefense use.

INTRODUCTION

Policy for the security of electronic information has developed in recent years in a setting of diverse interests. These interests have included national security and the separation of powers for governmental policymaking, as well as civil liberties, including personal privacy, and commercial needs for improved information safeguards. The current tensions in information security policy reflect all of these influences. To a large extent, these tensions have their basis in different views within Government of overall national interests and the central historical role of the Government, particularly the Department of Defense (DoD), in developing technology and setting policies for safeguarding electronic information.

This chapter provides a brief review of two of these influences:

- the context of Government controls on unclassified information that has evolved during the past few decades, and;
- the progression of prior policies concerning the privacy and security of electronic information that have led to today's policies.

Policies designed to keep electronic information secure developed historically largely in the context of protecting national security. One of the important ways that has been used to limit potential damage to the nation's security is through controls on the dissemination 132 . Defending Secrets, Sharing Data; New Locks and Keys for Electronic Information

of information. Federal limitations, dating to before the turn of the century, sought to prevent the disclosure and distribution of militarily sensitive, Government-owned or -controlled information. 1

Traditionally, information protected for national security reasons has been limited to military and diplomatic categories. Since the 1940s, a number of laws have been passed and presidential directives issued that have gradually expanded the range of information deemed vital to U.S. national security. Controls have been placed on data relating to, for example, atomic energy, space programs, and a variety of other technologies. (See table 11.) Similarly, efforts have been made to keep intelligence sources and methods secret and there have been discussions on whether controls might be warranted for satellite imagery gathered for the news media.2

At the same time, the medium of information that is to be controlled-i.e., oral, print, photographic, or electronic—has also expanded. The setting for the transfer of controlled information has become irrelevant, whether through the export of products or services, sales presentations, university laboratories and classrooms, or scientific or trade conferences.

Against this backdrop, computer and communications systems are among the media for controlling the transfer of such sensitive information. Concern for their vulnerability to penetration, particularly by foreign intelligence entities, has resulted in pressure to increase the security of these systems.

A second context that affects Government controls on information concerns the respective roles of and occasional conflicts between the executive and legislative branches in set-

Table 11 .- Selected Government Policies Related to Controls on Information Flows: A Context for Electronic Information Security

1940s:

79493: Atomic Energy Act* Ž Export Control Act •National Security Act° —establishes the Central Intelligence Agency 1950s:

Invention Secrecy Act

1960s:

Export Administration Act of 1969e

1970s:

Arms Export Control Act of 1976f Ž PD/NSC-24

-safeguard sensitive Government information in communications systems

1980s⁻

• Defense Authorization Act, 1984h —controls, on military and space technical data • NSDD 189'

-clarify controls on basic research data

-safeguard sensitive information in computer and communications systems

Recent reports:

Air Force study of foreign access to commercial databases Air Fe

·Soviet acquisition of Western technology

Soviet acquisition of Western technology' Scanic Foregord on counterintelligence² Accomic Energy Act of 1948 (3) 384 705. BeyondCorrow Act of 1948 (3) 384 705. BeyondCorrow Act of 1948 (3) 384 705. BeyondCorrow Act of 1948 (3) 384 705. Beyond Accombing and Selection and the Protocolon of an found secondy. Act of 1951 (1) 5.C 185-188) "Expert Advantation Act of 1970 (2) Appl (3) C2107215) as amended 1979

 **Epp01 Administration has a single

 **Epi01 Administration hasingle

 **Epi01 Adm

In Less 112 for Declaring to "entry for the form before the form and the formation of the formati

cations and Automated Information Systems Security, Sept 17, 1984 *- The Earlightairan of Western Data Bases," Report of the Air Force Management

ting policy when national security is at stake.3 The history of this controversy has its origins in the drafting of the Constitution and it continues to raise complex issues for both branches. Since the beginning of the Cold War in the mid-

[&]quot;The Evolution and Organization of the Federal Intelligence Function: A Brief Overview (1776-1975)," Supplementary Reports on Intelligence Activities, Book 6, Senate Select Com-

Reprints on Intelligence Activities, Joans 6, Sense Contracting mittee to Study Government Operations, Report 94-755, Apr. 23, 1976. "U.S. Congress, Office of Technology Assessment, Conzec-cial Pressentation from Space-Technical Memorandum, OffarMs 32-60, Masshington, D.C. U.S. Government Printing Office, May 1987).

^{&#}x27;Harold C. Relyez, "National Security and Information," Government Information Quarterly, vol. 4, No. 1, 1987, pp. 11-28.

1940s, the debate over the roles of the two branches has included such topics as atomic energy. satellite communications, and the funding of research in fields such as electronics and supercomputers and of the roles of the military v. civilian agencies.

The controversy over policymaking responsibilities within the Federal Government has a direct bearing on Federal policy in information security primarily because it influences the scope of national interests to be embraced in such policies and, in that process, the priorities emphasized. For example, one view of national interests places priority on military advantage and defense capability, with national security often being promoted through reliance on secrecy and Government controls. Advocates of this view accept the idea of Government control of access to information in the greater interest of national security. The other viewpoint focuses on the United States as a free and open society in which access to information, for realizing scientific, economic, and intellectual achievement, should be subject to only minimal Government control when there is clear justification.

In addition, the process by which policy is developed is becoming increasingly important as the range of national interests affected expands beyond national security concerns and, consequently, as tensions among competing objectives are created. Policymaking in Congress tends to be an open process, in contrast with the often closed process underlying past executive branch policles concerning communications and computer security.

Federal policy on electronic information security has also been shaped by concerns for privacy and civil liberties. Laws have been passed limiting warrantless Government wiretaps and prohibiting eavesdropping on others' private communications or gaining unauthorized access to computer systems. This path of Federal policymaking, which has its origins with the Communications Act of 1934, has Ch. 6—Major Trends in Policy Development Ž 133

gained momentum during the past two decades independent of concerns for foreign intelligence gathering.

As a consequence of these various influences, most of which have ramifications that extend well beyond information security, policy formulation has followed at least two interdependent paths, at times initiated by Congress and at other times by the executive branch. The resulting policies, are highlighted in table 12. In this process, however, there has been a growing influence of defense and intelligence interests in shaping policy for the security of unclassified electronic information.

Until recently, Federal policies on electronic information security, whatever their objectives, have not raised tensions. What is different about the policies of the 1980s, however, is that some of these have begun to affect segments of the private sector more significantly. In contrast with earlier policies, which had negligible influence on nondefense businesses or private citzens, recent policies have tended to impose added burdens on some businesses, to raise concerns for new restrictions on private sector access to unclassified, but sensitive information, and to interject an intelligence agency in normal business operations. (See ch. 5)

Some of the key questions that arise are: where is policy for the security of electronic information leading? can the current issues be resolved? what new issues might arise? The review of the evolution of policy in the remainder of this chapter provides limited insights into the answers to these questions. For example, there is little indication that any permanent change is about to occur to reconcile the different views of the national interest and how these should be addressed in policy on the security of electronic information. It is more likely, given the complexity of the issues, that the narrower ones will be addressed, such as the extent of controls on information flows v. the ease of public access to Federal information intended by the Freedom of Information

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) 144 2002 **Document No. 168**

HeinOnline -- 7 Bernard D. Reams, Jr., Law of E-SIGN: A Legislative History of the Electronic Signatures in Global and National Commerce Act, Public Law No. 106-229 (2000) [ii] 2002